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Abstract

This work is focused on alternative forms of Dark Energy. The challenges that the ΛCDM
model faces led to a variety of alternative models, such as extra dimensions, quintessence models,
f(R) extended gravity theories, scalar tensor quintessence models etc. The main goal of my master
thesis is to investigate the cosmological dynamics for general scalar tensor quintessence field
models. Firstly we introduce the reader to the mathematical formalism of Standard Cosmology
and then we study alternative theories that can play the role of Dark Energy such as quintessence
models based on linear-negative potentials of the form V (φ) = −s · φ. In the second part of
this work we review the scalar tensor quintessence field models and their theoretical background.
We investigate the equation of state parameter w(z) for these particular models and we use the
Union2.1 dataset of 580 SnIa as a validity test and to explore the observational consistency of the
theoretical model and its predictions for the fate of our Universe. Finally we study qualitatively
different potentials of the form V = s · |φ|n and use, once again the Union2.1 dataset as a
consistency test of our model.
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Chapter 1

Introduction

Cosmology is undoubtedly one of the most intriguing chapters of physical science. Since human
civilization began to deal with physical sciences, fundamental questions began to vex humanity,
such as “Where do we come from?”, “What are we?”, “Where are we going?”. Cosmology in
general deals with this kind of questions by describing the past and predicting the future of our
Universe. A more appropriate definition for Cosmology is that it is the branch of physics that
studies the evolution and the creation of our Universe, as well as the scientific laws that governs
it.

The development of cosmology can be considered as one of the scientific triumphs of the
twentieth century and a tremendous step forward in understanding nature. For large scales
Einstein gave a description of gravity by curved space-time in his theory of General Relativity
(GR). Soon after his discovery Friedmann, Robertson and Walker accomplished a model of the
evolution of the universe. At the other extreme for small scales Bohr, Einstein, Dirac, Heisenberg
and others developed quantum mechanics at the beginning of the 20th century. By these findings
it was possible for astrophysicists to understand the light emission of stars, which resulted in the
measurability of the velocities of stars by the redshift.

At its beginning, cosmology hardly existed as a scientific discipline. Nowadays along with
quantum field theory is considered to be one of the two cornerstones of modern physics. The
progress in Physics and in particular the improved astrophysical observations of distant objects
together with General Relativity (GR) and the Friedmann- Robertson-Walker (FRW) universe
was a first step to model the evolution of the Universe. The Big Bang theory[1–3] was born. The
Big Bang theory is the leading explanation about how the universe began. At its simplest, it
talks about the universe as we know it starting with an energy denstiy singularity, then inflating
over the next 13.8 billion years to the cosmos that we know today.

In the context of GR the Universe’s composition as we know it today is roughly as follows:

� The first basic ingredient of the cosmos is the Baryonic Matter which accounts. This is the
ordinary matter, i.e. atoms, that is composed of baryons (such as protons and neutrons) and
leptons (such as electrons and neutrinos). It comprises in general gas, dust, stars, planets,
people, etc. Another ingredient is the so-called Radiation, i.e particles that have zero mass
such as photons. The Baryonic Matter and Radiation consist of 4% of our Universe.

� Dark Matter(DM) which accounts for an estimated 22%. This is the so-called “missing
mass” of the Universe. Dynamical evidence[4–6] for the existence of dark matter comes
from the motions of galaxies relative to one another and aids in the formation of structure
in the universe. The dark matter is said to be “cold” because it is nonrelativistic (slow-
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moving) during the era of structure formation. Dark matter is currently believed to be
composed of some kind of new elementary particle.

� The remaining 74% of the universe is filled with an unknown component called Dark Energy
which is a type of energy field that displays the properties of repulsive gravity and is
responsible for the accelerating expansion of the Universe.

Finally it has to be mentioned that our Universe on scales greater than about 100 Mpc1 appears to
be isotropic and homogeneous as it is implied from the cosmological principle which is summarised
in the following chapter.

The Big Bang theory describes how the universe expanded from a very high density and high
temperature state. In the mid-1940s, after World War II, there were two distinct theories con-
cerning the initial conditions of our Universe. One was Fred Hoyle’s steady state model, whereby
new matter would be created as the universe seemed to expand. In this model the universe is
roughly the same at any point in time[7–10]. The other was Lemaitre’s Big Bang theory[11, 12],
advocated and developed by George Gamow, who introduced Big Bang Nucleosynthesis (BBN)
and whose associates, Ralph Alpher and Robert Herman, predicted the cosmic microwave back-
ground radiation (CMB)[13], estimated at a temperature of 5K. Ironically, it was Hoyle who
coined the phrase Big Bang that came to be applied to Lemâıtre’s theory in an attempt to re-
duce the importance of theory. However an immediate confirmation of this theory emerged in
1965 from Penzias and Wilson, when they discovered by chance the CMB[14] and measured the
temperature to be approximately 3K.

As with any theory, a number of mysteries and problems have arisen as a result of the de-
velopment of the Big Bang theory. Some of these mysteries and problems have been resolved
while others are still outstanding. Proposed solutions to some of the problems in the Big Bang
model have revealed new mysteries of their own. For example, the horizon problem[15], which is
the problem of determining why the Universe appears statistically homogeneous and isotropic in
accordance with the cosmological principle2, the magnetic monopole problem[16], which denotes
that if the early universe were very hot, a large number of very heavy, stable magnetic monopoles
would have been produced and the flatness problem[15], which says that a flat Universe is unstable
towards increasing or decreasing curvature, therefore the contribution of spatial curvature to the
expansion of the Universe could not be much greater than the contribution of matter. These prob-
lems were commonly resolved with inflationary theory, but the details of the inflationary universe
are still left unresolved. Since 1998 many geometrical[17, 18] and dynamical[19, 20] cosmological
observations indicate that the universe has recently entered a phase of accelerating expansion. In
order to achieve such an expansion one should introduce an energy that works as repulsive gravity
which have been attributed to Dark Energy(DE) or Modify Gravity. Determining the nature of
DE and DM is one of the most crucial problems that modern cosmology faced up until now.

DM could interact through the Weak interaction and gravitationally with normal matter or
electromagnetic radiation. This makes it very hard to detect it directly. While the search is
still in progress[21–23], possible DM particles for consideration are axions[24], neutrinos[25], neu-
tralinos[26] and so on. DM is important in the formation and continued growth of large scale
structures, such as galaxies and galaxy clusters. Particle physics predicts the massive size of DM
particles so that it can sustain structure forming properties. Weakly interacting particles, in-
cluding DM and its candidate particles, are all classified as Weakly Interacting Massive Particles

11 parsec is a unit of length used to measure large distances to objects outside the Solar System. A parsec is
approximately 3.09× 1016m

2See Chapter 2
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(WIMPs). Another popular DM candidate is MACHO. MACHO is an acronym for massive (as-
trophysical) compact halo object. A MACHO is a body composed of normal baryonic matter that
emits little or no radiation and drifts through interstellar space unassociated with any planetary
movements. MACHOs include black holes or neutron stars as well as brown dwarfs[27].

The simplest candidate model for DE is none other than the cosmological constant which
has constant in time energy density and pressure. This model is known as the ΛCDM model
and is considered as the most widely accepted theory of Cosmology. To achieve a static universe
Einstein introduced in 1917 this dark energy as a cosmological constant (Λ) in his equations.
However due to Hubble’s discovery of the expanding universe in 1927 the cosmological constant
was abandoned. Nevertheless, after 1998 the cosmological constant was reintroduced to explain
the observed accelerating expansion of the universe.

The ΛCDM model is based on a modified version of Einstein’s equations3

Gµν − Λgµν = 8πTµν (1.1)

where Λ is the new free parameter, the cosmological constant. Indeed, the left-hand side of
Eq.(1.1) is the most general local, coordinate-invariant, divergence-less, symmetric, two-index
tensor we can construct solely from the metric and its first and second derivatives. Also this
particular model has the additional advantage of simplicity due to a single free parameter.

However, it is somewhat problematic taking into account the fact that it faces two major
issues/problems that have not been answered yet. These issues can be summarised in the following
questions

� The Cosmological Constant Problem: Observationally, the cosmological constant density is
120 orders of magnitude smaller than the energy density associated with the Planck scale4.
How could the cosmological constant have been so large during the inflation period and so
small today?

� The Cosmic Coincidence Problem: Why is the energy density of DE comparable with the
density of matter even though these densities evolve very differently with time?

Let us study each problem separately and focus at first in the Cosmological Constant Problem.
From a particle point of view Λ identifies physically with the energy of zero-point quantum
fluctuations in the vacuum and, with a constant equation of state, which can be defined as the
fraction of pressure over density, of the form

w =
p

ρ
= −1 (1.2)

This can also be seen clearly when the new term from Eq.(1.1) is placed on right hand side of
this equation. In that case the cosmological constant is understood as a new contribution to
the energy momentum tensor corresponding to dark energy with constant density and constant
negative pressure. However the disagreement between the measured value of the cosmological
constant and that predicted from the quantum field theory is 120 orders of magnitude5. This is
the greatest discrepancy between measurement and theory known to man, and is known as the

3For an analytical derivation see the following chapter
4The Planck scale is lowest scale imaginable. Given a coordinate frame, we can reduce the coordinate distance

between two events as much as we want however the proper distance between them will not decrease beyond
Planck’s length. In other words that the notions of distance, of causality and any other notion based on a metric
structure lose their meaning at the Planck’s scale

5This is expanded in detail in Subsection 2.8.1
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cosmological constant problem and it remains unresolved until today as one of the most famous
problems in modern physics. One could think that maybe our hypothesis is not correct, i.e. the
dark energy is not due to vacuum energy (or Λ). In that case the problem remains but in a milder
form: why is the vacuum energy zero (as opposed to huge value predicted by theory)?

Next we present the Cosmic Coincidence Problem6. Under the assumption that our Universe
consists of matter, radiation and dark energy, we could define the corresponding energy densities.
The fact that the energy densities of dark energy and cosmological matter are of the same order
around the present time is very striking. In the standard ΛCDM model, the cosmological window
during which these components have comparable density is short one must explain how we happen
to live during the time when ρm ' ρDE.

In order to quantify the problem we can define the time-dependent energy densities of ρm and
ρDE and based on them, define a new parameter, r, as the ratio of the two parameter as follows

r =
ρm
ρDE

(1.3)

The ratio r ranges from r ' 0, when many orders of magnitude separate the two densities, to
r ' 1, when the two densities are equal. Opinions on this problem are divided: some authors[28–
30] think it is a problem, while others are not impressed, since it is hard to put a metric on
being surprised by such an anomaly. What also complicates things is that baryonic matter is
also comparable, while radiation is not that far off, being about two orders of magnitudes less
important today.

On the other hand, one may wonder, why such coincidence is seen as a big problem. There are
indeed some authors in the field who deny that the cosmic coincidence is actually a problem[31].
It appears to be a problem only if someone starts assuming that we could find ourselves with
equal probability in any of the periods of the cosmic evolution. So, anthropic arguments[32, 33]
necessarily enter the discussion.

Let us now be a little more explicit concerning the anthropic principle. In the literature there
is a distinction between the weak[34–36] and the strong[37–39] version of the anthropic principle.
In the first one, the relevant (anthropically weighted) a priori probability is supposed to concern
only a particular given model of the universe, with which one may be concerned since the observed
values of all physical and cosmological quantities are not equally probable. On the other hand
the strong anthropic principle the relevant anthropic probability distribution is supposed to be
extended over an ensemble of cosmological models that are set up with a range of different values
of what, in a particular model are usually postulated to be fundamental constants. Therefore the
observed values of these constants might have this particular value if it could be shown that all
the other values were unfavourable to the existence of anthropic observers.

In the effort to address the problems of the ΛCDM model, several alternative theories have
been proposed, such as extra dimensions[40–42], quintessence models[43], f(R) extended gravity
theories[44–46], scalar tensor quintessence models[47, 48], k-essence[49], Chaplygin gas[50–52]
etc. Some of these models such as scalar tensor quintessence models have also had some success
simultaneously tackling the coincidence problem, as the scalar field that plays the role of Dark
Energy presents dynamics and in particular, is the dynamical “Newton’s constant” (F (φ) = 1

8πG
).

In these models the dark energy is treated as a new matter field which is effectively homogenous,
and evolves as the universe expands. Within the present work, we focus particularly on the
scalar-tensor theory of graviation.

The thesis is organised as following:

6For more details see Subsection 2.8.2
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� In chapter 2 we make a review of the standard cosmological case, where we derive the Fried-
mann’s equations of motion for a Friedmann-Robertson-Walker (FRW) metric Universe by
varying the Einstein-Hilbert action and also by following a more historical method. Follow-
ing that, the cosmological constant and the solution of Friedmann equations is presented.
Finally, in this chapter, we describe the basic challenges of the ΛCDM problem. During
the calculations of this chapter we use the metric notation gµν = (+1,−1,−1,−1) together
with the Planck units, where c = } = 1.

� In chapter 3 we present an alternative theory for DE, i.e the quintessence models deriving
Friedmann’s equations of motion. For the calculations of this chapter and for the rest
of the thesis we use once again the Planck units, but we change the metric notation to
gµν = (−1,+1,+1,+1).7

� In chapter 4 we discuss modified gravity and the generalized background equations of the
theory. We derive Friedmann’s generalized equations from Lagrangian mechanics, together
with the traditional variational method. This chapter concludes our theoretical framework.

� In chapter 5 we study the field dynamics of quintessence model with linear potential and
then generalize it in scalar-tensor quintessence theory. We examine the evolution of the
φ field (the candidate for dark energy) along with the scale factor and the equation of
state parameter. In these sections we display numerically that Cosmic Doomsday can be
prevented in such theories of gravity. Also we test our theory with the Union2.1 dataset.
Finally, we study qualitative different potentials of the form V = s · |φ|n and use, once again,
the Union2.1 dataset as a validity test of our theory constructing the 1σ and 2σ confidence
level contours.

� In the final chapter we present our conclusions and future prospects.

7The different metric does not change the spacetime identities according to Sylvester’s Law of Inertia(see
following chapters).



Chapter 2

Standard Cosmology - ΛCDM Model

On an initial approach, we could say that General Relativity (GR) is the most fundamental
theory of gravitation through which a physicist can study the Universe’s spacetime. This partic-
ular theory is consistent with experimental data and the predictions of GR have been confirmed
in all observations and experiments to date. With the term Standard Cosmology we are referring
to the mathematical framework of GR and modern Cosmology, that describes our Universe. This
includes Einstein’s field equations and Friedmann’s equations of motion in a homogeneous and
isotropic Friedmann-Robertson-Walker (FRW) metric Universe, in the language of differential
geometry.

In this chapter we will describe the necessary mathematical tools of GR, for the sections to
follow and introduce the reader to the basic computations in Standard Cosmology.

2.1 Spacetime and Metric Tensor

In special relativity, space (~x) and time (t) can be regarded as interchangeable parts of a
single entity, spacetime. Fundamental equations can be written only between physical quantities
known as 4-vectors. GR aims to include within the spacetime the effect of gravitational force on
the particle motion. In that case we simply study particles that they move freely in a curved
spacetime. Therefore, in GR we are interested in the distance between points in four dimensional
spacetime, and we must also take into consideration the possibility that spacetime might be
curved. The distance can be written as

ds2 =
3∑

µ,ν=0

gµνdx
µdxν (2.1)

In Eq.(2.1) the quantity gµν is called the metric tensor and is a function of the coordinates and
contains all the information about the intrinsic geometry of the spacetime that we study, µ and
ν are indices taking the values 0, 1, 2 and 3, x0 is the time coordinate and x1, x2 and x3 are the
three spatial coordinates. Fortunately, this complicated situation can be dramatically simplified
by imposing the cosmological principle, which implies that at a given time, the Universe should
not have any preferred locations and directions.

All the way through this thesis, the Universe is considered homogeneous, isotropic and spatially
flat, known as the Friedmann-Robertson-Walker(FRW) Universe. This model can be described

6



2.2. Weyl’s Hypothesis and the Energy-momentum tensor 7

by the non-flat line element[2, 53]

ds2 = c2dt2 − α2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
(2.2)

where the quantity α(t) is the scale factor. This result is worth memorizing - after all, it is the
metric of our Universe! The scale factor measures the universal expansion rate, it is a function of
time alone, and it describes how physical separations are growing with time, since the coordinate
distances are by definition fixed. The parameter k is called the scalar curvature and can take
the values k = +1, 0,−1. The scalar curvature describes an open, a flat and a closed universe
respectively. Each topological geometry can be seen in Fig.2.1

Figure 2.1: Examples of Curved Manifolds (The picture was obtained from Ref.[53] after permis-
sion of the author.)

2.2 Weyl’s Hypothesis and the Energy-momentum tensor

In 1923, Herman Weyl studied the problem of the representation of the energy distribution
at large scales within the general theory of relativity. Considering the cosmological principle,
Weyl assumed that the universe contains a uniform substratum, within which galaxies behave
like particles in a perfect fluid (e.g. see [54]). Describing such a fluid requires two variables,
an energy-matter density ρ and pressure p, under the assumption of isotropy.1 If we want its
equability to be conserved, we must have insignificant relative motions of the particles and fluid’s
motion that has to be characterized by a common velocity with a 4-vector uµ (relative to the
observer).

Within the GR, matter and energy distribution in the Universe can be described by a tensor
which is defined as follows[53, 58]

Tµν = (ρ+ p)uµuν − p · gµν (2.3)

The aforementioned tensor is called the energy-momentum tensor. Moreover every tensor can
be written in a matrix form (as every tensor which describe physical quantities). Considering

1Even though on large scales our Universe is considered isotropic and homogeneous, in smaller ones it is not.
For this case the metric that describes such a spacetime has equal time components, however space is expanding
or contracting at different rates in different directions, depending on the values of pj [55–57].



2.3. Einstein’s Field Equations 8

homogeneity and isotropy, the stress-energy tensor takes the following form

Tµν =


ρ 0 0 0
0 −g11p 0 0
0 0 −g22p 0
0 0 0 −g33p

 (2.4)

How do the density and pressure evolve with time? In Minkowski space, energy and momentum
are conserved. These conservation laws can be combined into a four-component conservation
equation for the stress-energy tensor[53]

∂Tµν
∂xν

= 0 (2.5)

Eq.(2.5) is completely correct when it comes to a Minkowski space. However, when the spacetime
is curved the above equation is promoted to the covariant conservation equation[53]

∇νTµν ≡
∂Tµν
∂xν

− ΓaµνTaν − ΓaννTµa = 0 (2.6)

where ∇µ is the covariant derivative and Γaµν are the Christoffel’s symbols which are defined as[53]

Γaµν =
1

2
gaβ
(
∂gβν
∂xµ

+
∂gµβ
∂xν

− ∂gµν
∂xβ

)
(2.7)

Here we have to comment that in the bibliography it is usual for simplicity that the differentiation
regarding an index to be denoted by “,” and the covariant derivative by “;”.

2.3 Einstein’s Field Equations

Einstein’s dream was to connect the energy and matter distribution of spacetime to its result-
ing geometry. This particular equation must include tensors of the same order, in order to remain
invariant under transformations. Even though, an energy-momentum tensor was easy to be con-
structed its connection to a gravitational one was a bit tricky. Einstein based on the assumption
that the GR, for a weak gravitational field, should lead to Newtonian theory constructed the so
called Ricci Tensor.

In the Newtonian Theory the gravitational potential, Φ(r), obeys the Poisson’s Law that can
describe a gravitational field, which can be written as[53]

∇2Φ(r) = 4πGρ (2.8)

where G is Newton’s constant. In GR this role can be played by the metric tensor gµν hence
Einstein was looking for a tensor with second order derivatives of gµν , in order to ensure the
invariance. This tensor was the Riemann’s curvature tensor, which is defined as[53, 59]

Rρ
µσν =

∂Γρµν
∂xσ

−
∂Γρµσ
∂xν

+ ΓρασΓaµν − ΓρaνΓ
a
µρ (2.9)

The basic problem was that the Riemann curvature tensor and the energy-momentum tensor
are not of the same order. However, the Ricci tensor, which can be obtained through the Riemann
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curvature tensor if we make a contraction between two indices, is of the same order as the energy-
momentum tensor. The Ricci tensor can be defined as[53, 59]

Rµν = Rρ
µρν =

∂Γρµν
∂xρ

−
∂Γρµρ
∂xν

+ ΓραρΓ
a
µν − ΓρaνΓ

a
µρ (2.10)

Then, Einstein managed to construct a new tensor, as a function of the Ricci tensor Rµν and
the Ricci scalar. The latter is simply the contraction between its two indices with the metric
tensor, i.e. R = gµνRµν . That new tensor is the famous Einstein’s tensor and it is calculated via
the following equation[53, 59]

Gµν = Rµν −
1

2
gµνR (2.11)

Einstein also proved that the covariant derivative of Gµν is equal to zero, i.e. ∇µGµν = 02. Since,
the above equation is a non-linear second order differential equation for the metric, the following
two equations had to be proportional to each other and satisfy the relation[53, 59]

Gµν = Rµν −
1

2
gµνR = 8πGTµν (2.12)

In Eq.(2.12) the constant was selected by Einstein in order for the above equation to give Poisson’s
equation at the limit of a weak gravitational field.

2.4 Friedmann Equations

2.4.1 Basic Assumptions

Einstein’s field equations can be used for plenty of gravitational systems. In this section
we will study the Universe’s dynamical evolution through the solution for the scale factor a(t).
The Friedmann equations start with the simplifying assumption that the universe is spatially
homogeneous and isotropic, i.e. the cosmological principle, which is expressed by the following
metric

ds2 = α(t)2ds3
2 − c2dt2 (2.13)

where ds3
2 is a three-dimensional metric that must be one of

a. flat space of zero curvature

b. a sphere of constant positive curvature, i.e k = +1, or

c. a hyperbolic space with constant negative curvature i.e. k = −1.

The parameter k, which describes the geometry of three-dimensional space, is the basic param-
eter characterizing the global properties of our Universe. An exact solution for this scale factor
as a function of physical and conformal time is desirable for the analysis of several problems. The
most general spatial metric which has constant curvature is

ds3
2 =

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(2.14)

2For an analytical derivation see Appendix A.
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Substituting Eq.(2.14) in Eq.(2.13) we obtain the general non-flat FRW metric, which is given by
the line element3

ds2 = c2dt2 − α2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(2.15)

where the metric tensor notation is gµν = (+,−,−,−). Within this chapter this is the notation
that we adopted. One could rewrite Eq.(2.1) in a more convenient form as follows

ds2 = gµνdx
µdxν (2.16)

Comparing the two equation and demanding the equivalence of the aforementioned equations
we produce the components of the metric tensor

g00 = c2 = 1, g11 =
−α2

1− kr2
, g22 = −α2r2 g33 = −α2r2sin2θ

or equivalently for the inverse metric tensor

g00 = c2 = 1, g11 =
1− kr2

−α2
, g22 = − 1

α2r2
g33 = − 1

α2r2sin2θ

Therefore, we may write the metric in matrix form such as

gµν =


1 0 0 0

0 −α2

1−kr2 0 0

0 0 −α2r2 0
0 0 0 −α2r2sin2θ

 (2.17)

2.4.2 Christoffel’s Symbols

Thereafter, we compute the Christoffel symbols for the FRW metric, i.e Eq.(2.15), using the
definition

Γρµν =
1

2
gρσ(gσν,µ + gµβ,ν − gµν,σ) (2.18)

Of course the definitions of Eq.(2.7) and Eq.(2.18) are equivalent. Taking in consideration these
definitions, one can calculate the non-zero Christoffel’s symbols as follows

�

Γ0
11 =

1

2
g0σ
(∂gσ1

∂x1
+
∂g1σ

∂x1
− ∂g11

∂xσ

)
=

1

2
g00
(∂g01

∂r
+
∂g10

∂r
− ∂g11

∂t

)
=

=
1

�2
· 1 · 1

1− kr2 �2αα̇ =
αα̇

1− kr2

�

Γ0
22 =

1

2
g0σ
(∂gσ2

∂x2
+
∂g2σ

∂x2
− ∂g22

∂xσ

)
=

1

2
g00
(∂g02

∂x2
+
∂g20

∂x2
− ∂g22

∂t

)
=

=
1

�2
· 1 · r2

�2αα̇ = αα̇r2

3According to Sylvester’s law of inertia[60], the signature of the scalar product g does not depend on the
choice of basis. Moreover, for every metric g of signature (p; q; r) there exists a basis such that gab = +1 for
a = b = 1, . . . , p, gab = −1 for a = b = p + 1, . . . , p + q and gab = 0 otherwise. It follows that there exists an
isometry if and only if the signatures of g1 and g2 are equal. That’s the reason why the the spacetime identities
does not change regardless the signature of the metric that is chosen.
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�

Γ0
33 =

1

2
g0σ
(∂gσ3

∂x3
+
∂g3σ

∂x3
− ∂g33

∂xσ

)
=

1

2
g00
(∂g03

∂x3
+
∂g30

∂x3
− ∂g33

∂t

)
=

=
1

�2
· 1 · sin2θr2

�2αα̇ = αα̇r2sin2θ

�

Γ1
11 =

1

2
g1σ
(∂gσ1

∂x1
+
∂g1σ

∂x1
− ∂g11

∂xσ

)
=

1

2
g11
(∂g11

∂r
+
∂g11

∂r
− ∂g11

∂r

)
=

=
1

�2
·
(
− 1− kr2

ZZα2

)
·
(
−@@α2 1

(1− kr2)2

)
�2kr =

kr

1− kr2

�

Γ1
22 =

1

2
g1σ
(∂gσ2

∂x2
+
∂g2σ

∂x2
− ∂g22

∂xσ

)
=

1

2
g11
(∂g12

∂θ
+
∂g21

∂θ
− ∂g22

∂r

)
=

=
1

�2
·
(
− 1− kr2

α2

)
· �2α2r = −r(1− kr2)

�

Γ1
33 =

1

2
g1σ
(∂gσ3

∂x3
+
∂g3σ

∂x3
− ∂g33

∂xσ

)
=

1

2
g11
(∂g13

∂φ
+
∂g31

∂φ
− ∂g33

∂r

)
=

=
1

�2
·
(
− 1− kr2

α2

)
· �2α2sin2θr = −rsin2θ(1− kr2)

�

Γ1
01 =

1

2
g1σ
(∂gσ1

∂x0
+
∂g0σ

∂x1
− ∂g01

∂xσ

)
=

1

2
g11
(∂g11

∂t
+
∂g01

∂r
− ∂g01

∂r

)
=

=
1

�2
·
(
−
XXXX1− kr2

α2

)(
− 1
XXXX1− kr2

)
· �2αα̇ =

α̇

α

�

Γ2
02 =

1

2
g2σ
(∂gσ2

∂x0
+
∂g0σ

∂x2
− ∂g02

∂xσ

)
=

1

2
g22
(∂g22

∂t
+
∂g02

∂θ
− ∂g02

∂θ

)
=

=
1

�2
·
(
− 1

α2r2

)(
− r2

�2αα̇
)

=
α̇

α

�

Γ3
03 =

1

2
g3σ
(∂gσ3

∂x0
+
∂g0σ

∂x3
− ∂g03

∂xσ

)
=

1

2
g33
(∂g33

∂t
+
∂g03

∂φ
− ∂g03

∂φ

)
=

=
α̇

α

�

Γ2
12 =

1

2
g2σ
(∂gσ2

∂x1
+
∂g1σ

∂x2
− ∂g12

∂xσ

)
=

1

2
g22
(∂g22

∂r
+
∂g12

∂θ
− ∂g12

∂θ

)
=

=
1

�2
·
(
− 1
ZZα2r2

)(
− �2@@α2r

)
=

1

r
= Γ3

13
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�

Γ2
33 =

1

2
g2σ
(∂gσ3

∂x3
+
∂g3σ

∂x3
− ∂g33

∂xσ

)
=

1

2
g22
(∂g23

∂φ
+
∂g32

∂φ
− ∂g33

∂θ

)
=

=
1

�2
·
(
− 1
H
HHα2r2

)(
�2
HHHα2r2sinθcosθ

)
= −sinθcosθ

�

Γ3
23 =

1

2
g3σ
(∂gσ3

∂x2
+
∂g2σ

∂x3
− ∂g23

∂xσ

)
=

1

2
g33
(∂g33

∂θ
+
∂g23

∂φ
− ∂g23

∂φ

)
=

=
1

�2
·
(
− 1
H
HHα2r2sin2θ

)(
− �2HHHα2r2sinθcosθ

)
=
cosθ

sinθ

The non-zero Christoffel symbols are summarised in the following Table

Christoffel Symbols
Γ0

11 = αα̇
1−kr2 Γ0

22 = αα̇r2 Γ0
33 = αα̇r2sin2θ

Γ1
11 = kr

1−kr2 Γ1
22 = −r(1− kr2) Γ1

33 = −rsin2θ(1− kr2)

Γ1
01 = Γ2

02 = α̇
α

Γ3
03 = α̇

α
Γ2

12 = 1
r

Γ3
13 = 1

r
Γ2

33 = −sinθcosθ Γ3
23 = cosθ

sinθ

2.4.3 Ricci Scalar

In order to compute the Ricci Scalar we will use the above calculated Christoffel’s symbols
along with the definition

Rµν = Rρ
µρν = Γρµν,ρ − Γρµρ,ν + ΓρσρΓ

σ
µν − ΓρσνΓ

σ
µρ (2.19)

Hence, we may have for the (00) component

R00 =
�
�
��

0
∂Γρ00

∂xρ
−
∂Γρ0ρ
∂x0

+���
�:0

ΓρσρΓ
σ
00 − Γρσ0Γσ0ρ =

= −∂Γ1
01

∂t
− ∂Γ2

02

∂t
− ∂Γ3

03

∂t
− Γ1

10Γ1
01 − Γ2

20Γ2
02 − Γ3

30Γ3
03 =

= −3
(∂Γ1

01

∂t
+ Γ1

10Γ1
01

)
= −3

( ä
a
− α̇2

α2
+
α̇2

α2

)
= −3

ä

a

In a similar way one can calculate the rest of the Ricci tensor components. Then the Ricci scalar
is written

R = gµνRµν = g00R00 + g11R11 + g22R22 + g33R33 =

= −3
ä

a
− 1− kr2

α2

αα̈ + 2α̇2 + 2k

1− kr2
− 1

α2r2
r2(αα̈ + 2α̇ + 2k)− 1

α2r2sin2θ
r2(aä+ 2ȧ2 + 2k)sin2θ ⇒

⇒ R = −6
( α̈
α

+
α̇2

α2
+

k

α2

)
(2.20)
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2.4.4 Calculating Friedmann Equations

As we already described, within the GR, matter and energy distribution in the Universe, must
be described by a tensor. The simplest form of a tensor, which can describe the uniform motion
of a perfect fluid within a curved gravitation background is given by Eq.(2.3), i.e.

Tµν = (ρ+ p)uµuν − pgµν (2.21)

That is, as we already mentioned, the energy-momentum tensor. One could think naively, the
energy-momentum tensor as a measure of the “matter content” of the Universe. As there are
not any preferable reference frames we will use the one most simplified and suited to our needs.
The only non-zero component of uµ for a comoving observer is the time component, which we
normalize to 1, so we can write uµ = (1, 0, 0, 0). Hence the energy-momentum tensor for the
perfect fluid can be written as

Tµν = (ρ+ p)gµ0gν0 − pgµν (2.22)

Furthermore, any tensor can take the form of a matrix as we already discussed. As a result, the
Tµν in this case, takes the form

Tµν =diag{ρ,−p,−p,−p} (2.23)

Now we are ready to compute the non-zero components of the Einstein field equations[58]

� The (00)-component

R00 −
1

2
g00R = 8πGT00 ⇒

⇒ −3
α̈

α
−
(

1

2

)
· 1 ·

[
−6

(
α̈

α
+
α̇2

α2
+

k

α2

)]
= 8πGρ⇒

⇒ −3
α̈

α
+ 3

(
α̈

α
+
α̇2

α2
+

k

α2

)
= 8πGρ⇒(

α̇

α

)2

=
8πG

3
ρ− k

α2
(2.24)

which is also known as the first (order) Friedmann Equation.

� The (11)-component

R11 −
1

2
g11R = 8πGT11 ⇒

αα̈ + 2α̇2 + 2k

1− kr2
− 3

α2

1− kr2

(
α̈

α
+
α̇2

α2
+

k

α2

)
= −8πG

(
− α2

1− kr2

)
p⇒

2
α̈

α
+
α̇2

α2
+

k

α2
= −8πGp. (2.25)

One can easily show that the (22)-component and (33)-component give rise to the same
Eq.(2.25). Now, substituting Eq.(2.24) into Eq.(2.25), we end up with[58]

α̈

α
= −4πG

3
(ρ+ 3p) (2.26)
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Eq.(2.26), in this form, is known as Raychaudhuri Equation or Acceleration Equation, given the
fact that there is only the second derivative term of the scale factor. According to Newton and
Eq.(2.8), the pressure does not interact with gravity. However Einstein, according to Eq.(2.25),
proves that pressure interacts with gravity and considering p > 0, pressure causes deceleration of
the expansion just like density.

The above equations determine the evolution of the scale factor α(t) in time as a function of
the energy density and pressure of the perfect fluid that the Universe contains. A third relevant
but dependent equation is the conservation of energy equation or the continuity equation as we
know. The continuity equation can be written as[58]

ρ̇+ 3
α̇

α
(ρ+ p) = 0 (2.27)

We notice that this is derivable from the other two, therefore it is not independent4 . Furthermore,
due to the uniformity of the energy and matter distribution in the Universe, energy density as
well as pressure are considered functions only of the time coordinate t. As we can see in the
above equation, there are two terms that contribute to variation of the energy density within the
Universe; the first term in the parenthesis decreases the energy density because of the universe
expansion, as is expected and the second one gives energy loss due to pressure’s work from the
matter in the universe.

Although we need one more equation so we can solve the system (our components are not
independent). We will use, of course, the equation that connects energy density with perfect
fluid’s pressure

p = wρ (2.28)

The proportionality factor w, it may generally be a function of the time and not a constant as it
is assumed here. To summarize, the Friedmann equations are

Friedmann Equations for Standard Cosmology

(
α̇

α

)2

=
8πG

3
ρ− k

α2

α̈

α
= −4πG

3
(ρ+ 3p)

ρ̇+ 3
α̇

α
(ρ+ p) = 0

p = wρ

All these equations lead to the determination of the scale factor α(t) and the dynamical
evolution of the Universe in time. From the system of the first three equations only the 2
are independent.

4For an analytical derivation see Appendix A. An alternative way to prove that this equation is dependent is
through the Bianchi identities. This is also shown in Appendix A



2.5. Mathematical Approach for Calculating Friedmann Equations 15

2.5 Mathematical Approach for Calculating Friedmann

Equations

The method that we used in the previous sections in order to obtain the Friedmann Equations
is somewhat instinctive and historic. One could follow a more mathematical approach to derive
the Friedmann Equations. In general, there are two basic methods in order to derive the equations
of motion from a given action

a. By varying the action with a general metric, derive Einstein Equations and then use FRW
metric.

b. By using the FRW metric directly in the Einstein Hilbert Action and vary with respect to
the scale factor to obtain Friedmann equations.

In this section we will derive Friedmann equations using both methods.

2.5.1 First Method: Variation of the Action with General Metric

Let us first consider the full Einstein-Hilbert action

S =

∫
d4x
√
−g
[

1

2κ
R + Lmatter

]
(2.29)

Eq.(2.29) consists of two terms. The first is the geometric one, where g = det(gµν) is the deter-
minant of the metric tensor matrix, R is the Ricci scalar, κ = 8πGc−4 is Einstein’s constant and
the other term is the Lagrangian that describes any matter fields appearing in the theory.

Following the action principle, we require that the variation of the action with respect to the
inverse metric is zero, i.e

δS

δgµν
= 0⇒

∫
d4x

[
1

2κ

δ (R
√
−g)

δgµν
+
δ (Lmatter

√
−g)

δgµν

]
δgµν = 0⇒

⇒
∫
d4x

[
1

2κ

(
δR

δgµν
√
−g +R

δ
√
−g

δgµν

)
+
δ (Lmatter

√
−g)

δgµν

]
δgµν = 0

×
√
−g√
−g

===⇒

⇒
∫
d4x
√
−g
[

1

2κ

(
δR

δgµν
+

R√
−g

δ
√
−g

δgµν

)
+
δ (Lmatter

√
−g)√

−g δgµν

]
δgµν = 0 (2.30)

Since Eq.(2.30) should be zero for any variation δgµν it implies that

δR

δgµν
+

R√
−g

δ
√
−g

δgµν
= − 2κ√

−g
δ (Lmatter

√
−g)

δgµν
(2.31)

Eq.(2.31) is the equation of motion for the metric field. We now bodly define the right hand side
of this equation as the stress-energy tensor [61]

Tµν ≡
−2√
−g

δ (Lmatter

√
−g)

δgµν
(2.32)

which describes the density and flux of energy and momentum in spacetime.
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2.5.1.1 Variation of Riemann tensor, Ricci tensor and Ricci scalar

Next we will try to calculate the left hand side of Eq.(2.31). For that we need the variations
of the Ricci scalar R and the determinant of the metric. It is straightforward to show that5

δR = Rµνδg
µν +∇σ

(
gµνδΓσµν − gµσδΓρρµ

)
(2.33)

where in Eq.(2.33) we used the metric compatibility of the covariant derivative ∇σg
µν = 05. The

last term, ∇σ

(
gµνδΓσνµ − gµσδΓρρµ

)
, multiplied by

√
−g becomes a total derivative, since

√
−gAµ;µ =

√
−g∇µA

µ = ∂µ
(√
−gAµ

)
=
(√
−gAµ

)
,µ

(2.34)

and thus by Stoke’s theorem only yields a boundary term when integrated. Therefore when the
variation of the metric δgµν vanishes at infinity, this term does not contribute to the variation of
the action. Thus we obtain

δR

δgµν
= Rµν (2.35)

2.5.1.2 Variation of the determinant

Jacobi’s formula, the rule of differentiating a determinant, gives5

δg = δ det (gµν) = ggµνδgµν (2.36)

Using this we are ready to prove that

δ (
√
g) =

1

2
√
g
δg = −1

2

(
√
g)�2

�
�
√
g
gaβδg

aβ = −1

2

√
ggaβδg

aβ ⇒

⇒ δ (
√
g) = −1

2

√
ggaβδg

aβ (2.37)

Now, in order to get the expression for the 4-dimensional pseudo-Riemannian space of General
Relativity, we simply replace g → −g and let the indices run from 0 to 3 (the usual greek ones).
We then have

δ
(√
−g
)

= −1

2

√
−ggµνδgµν (2.38)

where µ, ν = 0, 1, 2, 3 as usual and we used the fact that gµνδg
µν = −gµνδgµν which follows from

the rules for differentiating the inverse of a matrix, δgµν = −gµα (δgαβ) gβν .
Now, we have all the necessary variations at our disposal, hence one can obtain the Einstein’s

Field Equations

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.39)

Lastly, let us re-express Eq.(2.39) in a more compact defining the Einstein tensor as Gµν =
Rµν − 1

2
gµνR, which is as we mentioned already in Eq.(2.12), the symmetric second rank tensor

and use the geometrized units, where c = 1. Therefore the Einstein’s Field Equations are given
by

Gµν = 8πGTµν (2.40)

Comparing Eq.(2.12) and Eq.(2.40) one can see that these particular equations are exactly the
same, as it was expected. It has to be mentioned that Eq.(2.24) and Eq.(2.25) can be obtained
from the Einstein Equations following the same procedure as shown in the previous sections.

5For an analytical derivation see Appendix A.
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2.5.2 Second Method: Variation of the action with FRW metric

An alternative way to derive Eq.(2.24) and Eq.(2.25) is through the second method that we
described[62, 63]. Under the assumption that the spacetime manifold is described by a FRW
metric and preserve the same notation as before, i.e. gµν = (+,−,−,−) and taking into account

the Ricci scalar R = −6
(
α̈
α

+ α̇2

α2 + k
α2

)
the action (also known as the Einstein-Hilbert action)

has the simple form[64]

SEH = −
∫

R

16π

√
−g d4x (2.41)

where
√
−g d4x is the differential 4-volume element. By using the Ricci scalar and the metric

tensor for an FRW universe, the new action can be re-expressed as

SEH = −
∫
− 6

16π

(
α̈

α
+
α̇2

α2
+

k

α2

)√
−g d4x =

∫
3

8π

(
α̈

α
+
α̇2

α2
+

k

α2

)
α3 d3x dt⇒

⇒ SEH =
3

8π

∫
d3x dt

(
α2α̈ + αα̇2 + αk

)
=

3V

8π

∫ (
α̈α2 + αα̇2 + αk

)
dt (2.42)

But
d(α2α̇ )

dt
= 2αα̇2 + α2α̈, therefore Eq.(2.42) takes the following form

SEH =���
���

��:03V

8π
α2 α̇|t2=∞

t1=0 +
3V

8π

∫ (
−2αα̇2 + αα̇2 + αk

)
dt⇒ SEH =

3V

8π

∫ (
−αα̇2 + αk

)
dt (2.43)

We could also introduce the action for a point particle of mass m is Spart = −m
∫
dτ , where

dτ is is the differential of proper time τ . However, if these particles are at rest in the comoving
frame (i.e. dτ = dt), and ρ0 is the density of the ideal fluid (where ρ0 = m/V ), then this action
reduces to

Spart = −ρ0 · V
∫
dt (2.44)

Combining Eq.(2.43) and Eq.(2.44) we conclude that the total action is

Stotal = SEH + Spart =
3V

8π

∫ (
−αα̇2 + αk − 8π

3
ρ0

)
dt (2.45)

Now, considering that the action is typically represented as an integral over time, S =
∫
dtL

, where L is the Lagrangian density and remembering that we are working in a homogenous
Universe, i.e V can be neglected, we deduce that

Ltotal =
3

8π

(
−α̇2α + αk − 8π

3
ρ0

)
= − 3

8π
α̇2α +

3kα

8π
− ρ0 (2.46)

If the above action is varied with fixed t1; t2;α(t1) and α(t2), allowing the trajectory of α(t)
to vary in between the initial and the final times, the Euler-Lagrange equation gives rise to the
second order equation. Indeed

d

dt

(
∂Ltotal

∂α̇

)
=
∂Ltotal

∂α
⇒ d

dt

(
−3α̇α

4π

)
= −3α̇2

8π
+

3k

8π
⇒ − 3

4π

(
α̈α + α̇2

)
= − 3

8π
α̇2 +

3k

8π
⇒

⇒ −2
(
α̈α + α̇2

)
= −α̇2 + k ⇒ −2α̈α− 2α̇2 = −α̇2 + k ⇒ α̈

α
= −1

2

α̇2

α2
− k

2α2
(2.47)
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The Friedmann equation Eq.(2.25) imply the above for p = 06.
Rewriting the action in terms of of t(α) one can see that the action can be calculated

Stotal =
3V

8π

∫ (
−αα̇2 + αk − 8π

3
ρ0

)
dt = V

∫ (
− 3

8π
αα̇2 +

3

8π
αk − ρ0

)
dt

dα
dα =

= V

∫ (
− 3

8π
αα̇2 +

3

8π
αk − ρ0

)
ṫdα = V

∫ (
− 3α

8π ṫ2
+

3

8π
αk − ρ0

)
ṫdα⇒

⇒ Stotal = V

∫ (
− 3α

8π ṫ
+

3

8π
αkṫ− ρ0ṫ

)
dα (2.48)

Accordingly, the new Lagrangian density is

Ltotal = − 3α

8π ṫ
+

3

8π
αkṫ− ρ0ṫ (2.49)

Allowing general variations with t1 and t2 free but fixing α1 and α2, we get the first order equation
as follows

d

dα

(
∂Ltotal

∂ṫ

)
=
dLtotal

dt
⇒ d

dα

(
−3α

8π
·
(
− 1

ṫ2

)
+

3αk

8π
− ρ0

)
= 0⇒ 3α

8πṫ2
+

3αk

8π
− ρ0 = c(t)

ṫ= 1
α̇===⇒

c(t)=0

⇒ 3α

8π
α̇2 +

3αk

8π
− ρ0 = 0⇒ αα̇2 + αk − 8πρ0

3
= 0

:α3

=⇒ α̇2

α2
=

8πρ0

3α3
− k

α2

G=1
==⇒ α̇2

α2
=

8πGρ0

3α3
− k

α2

(2.50)

This is equivalent to the first Friedmann equation, i.e Eq.(2.24) for ρ = ρm.
This particular method holds true only for matter for the case of Standard Cosmology. There

is a similar way to derive the Friedmann equations following the same procedure as in Ref.[65].
Let us start from Eq.(2.29) and substituting the Ricci scalar we get

S =

∫
d4x
√
−g
[

1

2κ
R + Lmatter

]
=

∫
d4
√
−g
[
−3

κ

(
α̈

α
+
α̇2

α2
+
k

α

)
+ Lmatter

]
=

=

∫
d4x

[
α3

(
−3

κ

)(
α̈

α
+
α̇2

α2
+
k

α

)
+ Lmatter

√
−g
]

=

∫
d4x

[
−3

κ

(
α̈α2 + α̇2α + αk

)
+ Lmatter

√
−g
]

However using the chain rule α̈ = d
dt
α̇ = dα

dt
d
dα
α̇, therefore varying the action with respect to α

one can see

δαS = 0⇒
∫
d4x
[
− 3α2

κ
δ

(
dα

dt

d

dα
α̇

)
+

(
−3

κ

)
2αα̈δα +

(
−3

κ

)
αδα̇2 +

(
−3

κ

)
α̇2δα +

(
−3

κ

)
kδα+

+
δ (
√
−gLm)

δα
δα
]

= −3

κ

∫
d4x

(
−2αα̇δα̇ + 2α̈αδα + 2αα̇δα̇ + α̇2δα + kδα

)
+

∫
d4x

δ (
√
−gLm)

δα
δα =

= −3

κ

∫
d4x

(
2α̈αδα + α̇2δα + kδα

)
+

∫
d4x

δ (
√
−gLm)

δgµν
δgµν

δα
δα = 0⇒

⇒ −3

κ

∫
d4x

(
2α̈αδα + α̇2δα + kδα

)
+

∫
d4x

(−2)δ (
√
−gLm)√

−gδgµν

√
−g

(−2)

δgµν

δα
δα = 0

Eq.(2.32)
=====⇒

⇒ −3

κ

∫
d4x

(
2α̈αδα + α̇2δα + kδα

)
+

∫
d4x(Tijδ

ij)δα = 0 (2.51)

6We have assumed a pressure-less fluid in Eq.(2.41)
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Hence from Eq.(2.51) we derive

−3

κ

(
2α̈α + α̇2 + k

)
+ Tijδ

ij = 0⇒ −3

κ

(
2α̈α + α̇2 + k

)
− 3pα2 = 0⇒

2α̈α + α̇2 + k = −κpα2 ⇒ 2
α̈

α
+
α̇2

α2
= −κp = −8πGp (2.52)

i.e Eq.(2.25). Now in order to obtain the first Friedmann Equation we will use a common technique
starting by the original form of a flat Robertson-Walker metric

ds2 = N2(t)dt− α2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(2.53)

and we only take the gauge N(t) = 1 after the variation with respect to N(t) has been performed.
For this particular variation we will need the following relations

R = gµνRµν = g00R00 + gijRij =
1

N2(t)
R00 + gijRij ⇒

⇒ δR

δN
=

δ

δN

(
1

N2(t)
R00 + gijRij

)
= − 2

N3
R00

δ (
√
−gLm)

δN
=
−2δ (

√
−gLm)√

−gδgµν
δgµν

δN

√
−g

(−2)
= Tµν

δgµν

δN

(
−α

3N

2

)
= T00

δg00

δN

(
−α

3N

2

)
=
α3ρ

N2

Now we are ready to vary the action Eq.(2.29) with respect to N(t)

δS = 0⇒
∫
d4x
√
−g
[
R

2κ
+ Lm

]
= 0⇒

∫
d4x

[
α3N

2κ
R +
√
−gLm

]
= 0⇒

⇒
∫
d4x

[
δ

(
α3N

2κ

)
R +

α3N

2κ

δR

δN
δN +

δ (
√
−gLm)

δN
δN

]
= 0⇒

⇒
∫
d4x

(
α3R

2κ
+
α3N

2κ

(
− 2

N3
R00

)
+
α3ρ

N2

)
δN = 0⇒ α3R

2κ
+
α3N

2κ

(
− 2

N3
R00

)
+
α3ρ

N2
= 0⇒

⇒ R− 2

N2
R00 +

2κρ

N2

N=1
==⇒ R− 2R00 = −2κρ⇒ −6

(
α̈

α
+
α̇2

α2
+

k

α2

)
− 2

(
−3

α̈

α

)
= −2κρ⇒

⇒ −6
α̇2

α2
− 6

k

α2
= −2κρ⇒ 3

α̇2

α2
= κρ− 3

k

α2
⇒ α̇2

α2
=

8πG

3
ρ− k

α2
(2.54)

i.e Eq.(2.24)
In conclusion, in this section we used a very useful method, the one of the variational approach.

We simplified things and we easily found the equations of motion. This method is particularly
useful when we have even more complicated systems and actions than the one we studied such
the actions in f(R) modified gravity cases or scalar tensor quintessence theories[66–69]

2.6 Einstein’s Static Universe

In 1917 it was not even clear that galaxies outside our own Milky Way existed, let alone
universal expansion. Therefore in that period the most obvious theory was that of a “static
infinite” Universe. Nevertheless the Friedmann equations with matter or radiation do not have



2.6. Einstein’s Static Universe 20

static solution. A static universe implies that α(t) = constant⇒ α̇ = α̈ = 0. However, a Universe
dominated by matter or radiation satisfies Eq.(2.26)

α̈

α
= −4πG

3
(ρ+ 3p)

Since the right hand side of Eq.(2.26) is not zero this excludes the static solution. This can be
also understand intuitively, since normal matter has attractive gravity, so each fluid element will
attract each other element, causing the Universe to decelerate. This can be seen clearly in the
following figure, where we used the same procedure as the one that follows setting Λ = 0 [70]

Figure 2.2: The “effective” potential V (α) = −A
a

, where A = 4πG
3
ρ0α

3
0, describing the expansion

of the universe in the presence of matter or radiation. This particular equation for the potential
was derived from Eq.(2.71) setting Λ = 0

Now the potential is everywhere negative as we can see from Fig.2.2, therefore the expansion
can continue indefinitely. This is called the Milne Universe.

This was a real puzzle for Einstein who strongly believed that the Universe was static. There-
fore he proposed, in 1917, the concept of the cosmological constant[71]. Einstein’s Universe, also
referred to as a “stationary” or “infinite” or “static infinite” Universe, is a cosmological model in
which the universe is both spatially infinite and temporally infinite, and space is neither expanding
nor contracting. In reality Einstein introduced in his field equations a constant Lorentz-invariant
term, the cosmological constant Λ, which corresponds to a tiny correction to the geometry of the
Universe. Hence Eq.(2.40), setting c = 1, became[58]

Gµν − Λ gµν = Rµν −
1

2
gµνR− Λ gµν = 8πGTµν (2.55)

In contrast to the first two terms on the right-hand side, the Λ gµν term does not vanish in
the limit of flat space-time. With this addition, Friedmann’s equations take the form5

H2 =

(
α̇

α

)2

=
8πG

3
ρ+

Λ

3
− k

α2
(2.56)

Ḣ +H2 =
α̈

α
= −4πG

3
(ρ+ 3p) +

Λ

3
(2.57)



2.6. Einstein’s Static Universe 21

Now let us discuss the deSitter expansion that we can derive from Eq.(2.56) and Eq.(2.57).
In late times the cosmological constant term takes over. Therefore setting ρ = 0 in Eq.(2.56) we
obtain the following equation

α̇

α
=

√
Λ

3
− k

α2

k=0
==⇒ α̇

α
=

√
Λ

3
⇒ dα

dt

1

α
=

√
Λ

3
⇒ α(t) ' e

√
Λ
3
t (2.58)

For this scenario the Universe is expanding exponentially with time. This particular model is
known as the de Sitter model.

Let us now return to the unstable Universe of Einstein. Einstein considered a closed Universe
with cosmological constant, i.e. k = 1, and that the other component of the universe is matter,
we derive that

ρtotal = ρm

ptotal = pm = wmρm
wm=0
===⇒ ptotal = 0 (2.59)

Now taking into consideration that ρ = ρm = ρ0

α3 , Eq.(2.56) and Eq.(2.57) take the final form

H2 =

(
α̇

α

)2

=
8πG

3
ρm +

Λ

3
− 1

α2
=

8πG

3

ρ0

α3
+

Λ

3
− 1

α2

Ḣ +H2 =
α̈

α
= −4πG

3

ρ0

α3
+

Λ

3
(2.60)

For a static universe we require α̇ = α̈ = 0. Setting α = αc Eq.(2.60) can be written as

0 = −4πG

3
ρm +

Λ

3
⇒ Λ = 4πGρm = 4πG

ρ0

α3
c

(2.61)

As we can see the cosmological constant is tuned to match exactly the matter density in this way.
As we have already proven the repulsion due to Λ balances the attraction of the matter. But

what if the matter density is off by a tiny amount? (Equivalently we could ask, what if Λ is
slightly bigger than half the matter density, or the universe is a bit bigger or smaller than its
static solution?). It turns out that the solution is completely destroyed, leading to either runaway
collapse driven by the matter, or runaway accelerated expansion driven by Λ.

To see this, let us consider a small perturbation of matter density around the static solution

ρm = ρ′m(1 + δ(t)), with | δ |� 1 (2.62)

In Eq.(2.62), ρ′ = Λ
4πG

is the density of a static universe. We know from the fluid conservation
equation that the matter density evolves as α(t)−3, and if we normalize the scale factor to α = 1
in the static solution, we can write the conservation equation simply as

ρm = ρ′m · α(t)−3 (2.63)

Comparing Eq.(2.62) and Eq.(2.63) we can read of the density perturbation in terms of the scale
factor as δ(t) = α(t)−3 − 1. Since δ is much smaller than unity then α(t) should also differ by a
small amount

α(t) = 1 + ε(t) (2.64)

Rewriting Eq.(2.57) in terms of ρm one can see that

α̈

α
= −4πG

3
ρ′m · α(t)−3 +

Λ

3
=

4πGρ′m
3

(
1− α(t)3

)
(2.65)
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Plugging our perturbative expansion for α(t) into Eq.(2.65) all terms of O(ε2) and higher, we find

α̈ = ε̈ =
Λ

3

(
α− α−2

)
≈ Λ

3
(1 + ε− (1− 2ε)) ≈ Λε⇒ ε̈ ≈ Λε (2.66)

Eq.(2.66) has exponentials as solutions, i.e

ε = c1 · ε
√

Λt + c2 · ε−
√

Λt (2.67)

From the above equation one can see that the growing mode will grow exponentially and, de-
pending on the sign of c1 (which in turn depends on the sign of the initial perturbation δ), either
lead to runaway expansion or collapse to a Big Crunch. Regardless the solution this particular
model leads clearly to an unstable universe.

Finally one could make an analogy concerning the Einstein’s universe and classical mechanics
and in particular this type of universe can be recast to look like a point particle on the surface of
a sphere. Let us start with Eq.(2.57) which can be rewritten as

α̈

α
= −4πG

3
(ρ+ 3p) +

Λ

3
⇒ α̈ = −4πG

3
α(ρ+ 3p) +

Λα

3
(2.68)

Setting now R ≡ α⇒ R̈ ≡ α̈ as the radius, the previous equation takes the form

R̈ = −4πG

3
R(ρ+ 3p) +

ΛR

3
⇒ −4πG

3

R3

R2
(ρ+ 3p) +

ΛR

3
⇒

⇒ R̈ = −GM
R2

+
Λ

3
R (2.69)

where M = 4π
3
R3(ρ+3p). From Eq.(2.69) we find that a particle on the sphere feels both attractive

and repulsive forces. The repulsive force is Frep = Λ
3
R if Λ > 0 is induced by the cosmological

constant and increases with distance. Of course if Λ < 0 the force becomes attractive.
For our purpose it will be sufficient to note that the qualitative behaviour of the universe in

the presence of a cosmological term which is either constant or time varying, can be understood
very simply by rewriting Eq.(2.56) as follows(

α̇

α

)2

=
8πG

3
ρ+

Λ

3
− k

α2
⇒ 3

(
α̇

a

)2

= 8πGρ+ Λ− 3k

α2
⇒ 3α̇2 = 8πGα2 + Λα2 − 3k ⇒

⇒ α̇2 =
8πGρ

3
α2 +

Λ

3
α2 − k

× 1
2=⇒ 1

2
α̇2 =

4πGρ

3
+

Λα2

6
− k

2
⇒ 1

2
α̇2 + V (α) = E (2.70)

where V (α) = −
(

4πG
3
ρα2 + Λα2

6

)
and E = −k

2
. Assuming now that ρ = ρmatter = ρ0

(
α0

α

)3(1+0)
=

ρ0

(
a0

a

)3
one can easily derive

V (α) = −4πG

3
ρ0
α3

0

α�3
α�2 − Λα2

6
= −4πG

3
· ρ0α

3
0

α
− Λα2

6
= −

(
A

α
+

Λα2

6

)
(2.71)

where A = 4πG
3
ρ0α

3
0.

Eq.(2.70) can be seen as a classical motion with conserved energy E in a one dimensional
potential V (α) whose generic form is shown in the figure below[70]
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Figure 2.3: The “effective” potential V (α) describing the expansion of the universe in the presence
of matter and a cosmological constant

Once again, from Fig.2.3, one can see clearly the instability of this particular model.

2.7 Cosmological Constant and the ΛCDM Model

Due to the instability of this particular model the cosmological constant was abandoned. The
instability of the Einstein’s Universe was also proven from Eddington in 1930, e.g see[72]. In
accordance to these theoretical implications many observations indicated that the concept of a
static Universe was incorrect. The biggest indication was the discovery of Edwin Hubble in 1929
when he discovered that all galaxies inside the Milky Way Galaxy are moving away from each
other, implying an overall expanding universe7. From 1929 until the early 1990s, most cosmology
researchers assumed the cosmological constant to be zero. This led Einstein to remark that “the
introduction of the cosmological term was the biggest blunder of my life”.

Since the 1990s, several developments in observational cosmology[74, 75], especially the dis-
covery of the accelerating universe from distant supernovae in 1998[76–78] (in addition to inde-
pendent evidence from the cosmic microwave background and large galaxy redshift surveys [79]),
have shown that a mere 4% is ordinary observable matter, such as atoms. Dark matter, on the
other hand, accounts for an estimated 22%. In astronomy and cosmology, dark matter is hypo-
thetical matter that does not interact with the electromagnetic force, but whose presence can
be inferred from gravitational effects on visible matter. Dark matter is required to explain the
stability of galaxies and the rate of formation of large-scale structures. The remaining 74% of
the universe is filled with an unknown component called dark energy. Dark energy is however a

7Hubble discovered via observations that the velocity of the distant galaxies was proportional to each object’s
relative distance. This is known as Hubble’s law and is given by[73]

~u = H0
~d

wher u is is the vector of velocity of the receding object, d is is the vector of relative distance and H0 is present
value of the Hubble constant.
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purely hypothetical concept, put in by hand so we can explain the observed accelerated expansion
of the universe as it has never been detected in the laboratory. Determining the nature of dark
energy is one of the most important problems in modern cosmology and particle physics.

Dark energy is a repulsive force that opposes the self-attraction of matter and causes the
expansion of the universe to accelerate. While dark energy is poorly understood at a fundamental
level, the main required properties of it are that it functions as a type of anti-gravity, it dilutes
much more slowly than matter as the universe expands, and it clusters much more weakly than
matter, or perhaps not at all. In order to shed light to this problem many models have been
introduced through the years in order to explain the existence of this mysterious dark energy. The
simplest candidate model is non other than the cosmological constant that has negative pressure,
with its equation of state to be written w = −1. That leads to the current standard model
of cosmology known as the ΛCDM model, which provides an excellent fit to many cosmological
observations as of 2017. The background equations for the ΛCDM model are Eq.(2.55)-(2.57)

2.8 Challenges of the ΛCDM model

Although, the ΛCDM model provides an excellent fit to the cosmological data and has the
additional advantage of simplicity due to a single free parameter it is somewhat problematic as
it faces two major issues/problems[58]

� The Cosmological Constant Problem

� The Cosmic Coincidence Problem

2.8.1 The Cosmological Constant Problem

From the point of view of particle physics, the cosmological constant naturally arises as an
energy density of the vacuum. Moreover, the energy scale of Λ should be much larger than that
of the present Hubble constant H0, if it originates from the vacuum energy density, as we have
already discussed in the Introduction. This is the Cosmological Constant Problem and there have
been a number of attempts to solve it.

If the cosmological constant originates from a vacuum energy density, then this suffers from a
severe fine-tuning problem. Observationally we know that Λ is of order the present value of the
Hubble parameter H0, that is

Λ ≈ H0
2 =

(
100h

km

secMpc

)2

=

(
100h

3.24078× 10−20
�
��Mpc

sec��
�Mpc

)2

=
(
324.078h× 10−20s−1

)2
=(

324.078× 10−20 · 6.58× 10−25GeV
)2

=
(
2.13h× 10−42GeV

)2
(2.72)

where h ≈ 0.7 is the dimensionless parameter for the Hubble constant. This corresponds to a
critical density ρΛ

Λ

3
=

8πG

3
ρΛ ⇒ Λ = 8πGρΛ ⇒ ρΛ =

Λ

8πG
=

Λmpl
2

8π
=

4.5369 · 0.49× 10−84 · 1.4884× 1038GeV 4

8π
⇒

⇒ ρΛ =
3.309

8π
× 10−46GeV 4 ≈ 10−47GeV 4 (2.73)

Meanwhile the vacuum energy density evaluated by the sum of zero-point energies of quantum
fields with mass m is given by[80]

ρvac =
1

2

∫ ∞
0

d3~k

(2π)3

√
k2 +m2 =

1

4π2

∫ ∞
0

dk k2
√
k2 +m2 (2.74)
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This exhibits an ultraviolet divergence ρvac ∝ k4. However we expect that quantum field theory
is valid up to some cut-off scale kmax in which case the integral in Eq.(2.65) is finite[80]

ρvac ≈
k4
max

16π2
(2.75)

For the extreme case of General Relativity we expect it to be valid to just below the Planck scale,
where mpl = 1.22 × 1019GeV . Hence if we pick up kmax = mpl, we find that the vacuum energy
density in this case is estimated as

ρvac ≈ 1074GeV 4 (2.76)

Now comparing Eq.(2.73) and Eq.(2.76) one can see that ρvac is 10121 orders of magnitude larger
than the observed value.

2.8.2 The Cosmic Coincidence Problem

If one accepts the implications of current observations then it seems that we live at a singularly
remarkable point in the universe’s history since the two energy components, ρm and ρΛ, which
evolve completely differently and independently, are of the same order of magnitude. If dark
energy is indeed a cosmological constant then the epoch when its energy density is the same
order of magnitude as that of matter is a mere blip in the universe’s lifetime. Thus a fine tuning
problem has to be taken into account8.

Since the missing energy density and the matter density decrease their ratio must be set to
a specific, infinitesimal value in the very early universe in order for the two densities to nearly
coincide today at different rates as the universe expands which may require anthropic principle
arguments in order to be solved[81].

These particular problems led to a variety of alternative models that can provide a solution,
in order to explain the nature of the Cosmological Constant. Perhaps the standard ΛCDM model
is only a limiting case of a more complete, and less puzzling, cosmological model.

8The term fine tuning refers to circumstances when the parameters of the model must be adjusted very precisely
in order to agree with observations. Theories requiring fine tuning are regarded as problematic in the absence of
a known mechanism to explain why the parameters of the model happen to have precisely the needed values This
is referred to the bibliography as the Fine Tuning Problem



Chapter 3

Dark Energy in General Relativity - Quintessence Models

The idea of modifying gravity on cosmological scales has really taken off over the past
decade[82]. This has been triggered, in part, by theoretical developments involving higher di-
mensional theories, as well as new developments in constructing re-normalizable theories of grav-
ity[83–86]. The effect of gravity on matter is tightly constrained to be mediated by interactions of
the matter fields with a single rank-2 tensor field such as the metric gµ,ν . The term “gravitational
theory” can then be functionally defined by the set of field equations obeyed by the rank-2 ten-
sor, and any other non-matter fields it interacts with. If these equations are anything other than
Einstein’s equations, then we consider it to be a “modified theory of gravity”. This particular
definition is independent of the action or the Lagrangian of the particular model.

In an effort to adress the Cosmological Constant Problem and the Cosmic Coincidence Problem
many alternatives have been proposed. One of the possible solutions is that the role of dark energy
can be played by a scalar field. Scalar fields are extremely important when it comes to modern
physics. By being invariant under coordinate transformations, they are the simplest tensor fields,
with a zero order. Hence it is reasonable to presume that dark energy may also be described by
a scalar field, instead of using the cosmological constant.

In this particular category of models belongs the quintessence models1[87–90]. A quintessence
model is a scalar field minimally coupled to gravity. Let us present in this chapter this particular
category of models.

3.1 Energy Momentum Tensor and Equation of State

The expansion history of the Universe can be summarized as follows: The Universe originated
to a density singularity known as the Big Bang. Soon after that it entered a phase of accelerating
expansion known as inflation. During inflation causally connected regions of the Universe exited
out of the horizon, the Universe approached spatial flatness, monopoles were diluted and the
first particles that gave rise to structure were created. At the end of inflation the Universe
was initially dominated by radiation and afterward by matter, whose attractive gravitational
properties induced a decelerating expansion. Despite that, recent cosmological observation [74, 75]
that will be analysed in Section 5.1 indicate that the universe have entered a phase of accelerating
expansion which have been attributed in dark energy.

1The ancient Greeks proposed Quintessence (quinta essentia) as the fifth element after air, earth, fire and water
to describe a sublime perfect substance.
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The obvious question to address is therefore “What are the properties of the additional com-
ponent required to support this acceleration?”. To address this issue we must consider the Fried-
mann equation that determines the evolution of the scale factor a(t), i.e Eq.(2.26). Considering
a Universe containing matter and dark energy, Eq.(2.26) can be written as2

ä

a
= −4πG

3

∑
i

(ρi + 3pi) = −4πG

3

(
ρm + 3��*

0pm + ρX + 3pX

)
= −4πG

3
(ρm + ρX + 3pX) (3.1)

where ρX and pX are the energy density and the pressure of the dark energy respectively. The
only directly detected fluids in the universe are matter and the sub-dominant radiation. Both of
these fluids are unable to cancel the minus sign on the right hand side of the Eq.(3.1) leading
to decelerating expansion. Accelerating expansion in the context of GR can only be obtained by
assuming the existence of an additional component, such as the dark energy (ρX , pX = w · ρX),
which could potentially change the minus sign, i.e a field which violates the strong energy condition
ρ+ 3p ≥ 0(see [91]).

Rewriting Eq.(3.1) in terms of the dark energy equation of state parameter w as

ä

a
= −4πG

3
[ρm + ρX (1 + 3w)] (3.2)

It becomes clear from Eq.(3.2) that a w < −1
3

is required for accelerating expansion implying
repulsive gravitational properties for dark energy. Let us, now, examine the quintessence field as
a candidate for dark energy.

Quintessence fields are described by an ordinary scalar field minimally coupled to gravity and
their Lagrangian density can be written as[92]

L =
1

2
φ̇2 − V (φ) (3.3)

The above Lagrangian Eq.(3.3) corresponds to the action

S =

∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ− V (φ)

)
(3.4)

The variation of this action with respect to the inverse metric is zero, yielding

δS =

∫
d4xδ
√
−g
(

1

2
gµν∂µφ∂νφ− V (φ)

)
+

∫
d4x
√
−g
(

1

2
δgµν∂µφ∂νφ

)
(3.5)

However, we have already proven that δ
√
−g = −1

2

√
−ggµνδgµν , so Eq.(3.5) can be written as

0 = δS =

∫
d4x
(
− 1

2

)√
−ggµνδgµν

[1

2
gαβ∂αφ∂βφ− V (φ)

]
+

∫
d4x
√
−g
(1

2
δgµν∂µφ∂νφ

)
⇒

⇒
∫
d4x
√
−g
[
− 1

2
gµν

(1

2
gαβ∂αφ∂βφ− V (φ)

)
+

1

2
∂µφ∂νφ

]
δgµν = 0

The term in brackets equals half of the energy-momentum tensor, which is therefore given by

Tµν = −gµν
(1

2
∂αφ∂

αφ− V (φ)
)

+ ∂µφ∂νφ (3.6)

2For simplicity we denoted the scale factor as a instead of α(t) for the rest of our work.
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We have already mentioned that the cosmological principle implies homogeneity, so all spatial
derivatives vanish in this cosmological model. For that reason the stress energy tensor takes the
form

Tµν = φ̇2δ0
µδ

0
ν − gµν

(
1

2
φ̇2 − V (φ)

)
(3.7)

Comparing it to the energy-momentum tensor of a perfect fluid, which is as we recall

Tµν = (ρ+ p)uµuν + gµνp

one can “read” the energy density as well as the pressure, which are given in this case, by

ρ = T00 =
1

2
φ̇2 + V (φ)

p = −giiTii =
1

2
φ̇2 − V (φ)

(3.8)

Thus the corresponding equation of state parameter is[92]

w =
p

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(3.9)

A careful inspection of Eq.(3.9), leads to the possible range of w, i.e. −1 ≤ w ≤ 1. The state
parameter presents a unique minimum w = −1 for φ̇ = 0 and a unique maximum w = 1 for
V (φ) = 0. From Eq.(3.9) it is clear that it is impossible for w to cross the Phantom Divide Line
w = −1, hereafter PDL, in a continuous manner. The reason for that is that for w = −1 a zero
kinetic term φ̇2 is required and the continuous transition from w < −1 to w > −1 (or vice versa)
would require a change of sign of the kinetic term. The sign of this term however is fixed in
quintessence models. This difficulty in crossing the PDL w = −1 could play an important role in
identifying the correct model for dark energy.

3.2 Cosmological Equations of Quintessence

Now, considering a potential of the form V (φ) = −s φ the equations of motion are[92]

ä

a
= − 1

3Mp
2

(
φ̇2 + sφ

)
− Ω0mH0

2

2a3
and (3.10)

φ̈+ 3
ȧ

a
φ̇− s = 0 (3.11)

These equations can be easily derived from Eq.(2.26) and Eq.(2.27) using Eq.(3.8) as follows

ä

a
= −4πG

3

(
1

2
φ̇2 + V (φ) +

3

2
φ̇2 − 3V (φ)

)
− 4πG

3
ρm(t)⇒

⇒ ä

a
= −4πG

3

(
2φ̇2 − 2V (φ)

)
− 4πG

3

ρ0,m

a3(t)
⇒

⇒ ä

a
= −8πG

3

(
φ̇2 − V (φ)

)
− 4πG

3a3
ρcrit

ρ0,m

ρcrit
.
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Substituting ρcrit =
3H2

0

8πG
and Ω0,m ≡

ρ0,m

ρcrit
we end up with

ä

a
= −8πG

3

(
φ̇2 − V (φ)

)
− Ω0,mH0

2

2a3
⇒

⇒ ä

a
= −8πG

3

(
φ̇2 + sφ

)
− Ω0,mH0

2

2a3
⇒

⇒ ä

a
= − 1

3M2
p

(
φ̇2 + sφ

)
− Ω0,mH0

2

2a3
(3.12)

where Mp = (8πG)−1/2 is the Planck mass. Similarly for the φ field we derive

ρ̇+ 3
ȧ

a
(ρ+ p) = 0⇒ d

dt

(
1

2
φ̇2 + V (φ)

)
+ 3

ȧ

a

(
1

2
φ̇2 + V (φ) +

1

2
φ̇2 − V (φ)

)
= 0⇒

⇒ φ̈ φ̇+
dV

dφ

dφ

dt
+ 3

ȧ

a
φ̇2 = 0

:φ̇
=⇒ φ̈+ 3

ȧ

a
φ̇− s = 0 (3.13)

Afterwards, we will make another rescaling (in order to be consistent with the Ref.[92]) by
setting

H0t→ t⇒ H0 = 1

φ√
3Mp

→ φ (3.14)

s√
3MpH0

2
→ s

Taking the derivative of Eq.(3.14) we derive φ̇√
3Mp
→ φ̇⇒ 1

3Mp
2 φ̇2 → φ̇2. Hence Eq.(3.12) can be

written as[92]

ä

a
= − 1

3Mp
2 φ̇

2 − s

3Mp
2φ−

Ω0m

2a3
= − 1

3Mp
2 φ̇

2 − s
√

3MpH̄0
2

1√
3Mp

φ− Ω0m

2a3

(3.14)
===⇒

(3.14)
===⇒ ä

a
= −φ̇2 − sφ− Ω0m

2a3
⇒ ä

a
= −

(
φ̇2 + sφ

)
− Ω0m

2a3
(3.15)

Of course the scalar field equation Eq.(3.13) remains unchanged. It has to be mentioned that the
equations of motion can be derived following the aforementioned methods presented in Chapter
2 considering an appropriate action[2, 89, 90]



Chapter 4

Modified Gravity - Scalar Tensor Quintessence Models

According to the information presented in the previous chapters, many theories have been
proposed to solve the problems of the ΛCDM model. In this category as we mentioned is the
quintessence models, which theoretical background was presented in Chapter 3. Even though the
quintessence field has dynamical evolution and thus can solve coincidence problem[81], the origin
of the scalar field remains a problem. To overcome this problem scalar tensor quintessence models
have been proposed, which have the additional advantage of providing a potential solution to the
origin problem as the physical origin of the scalar field is the dynamical “Newtons constant”. The
model that we will study in this chapter is a general scalar tensor quintessence field[93–95].

4.1 Dynamical Cosmological Equations in Scalar Tensor

Quintessence

Let us start with the most general action involving gravity nonminimally coupled with one
scalar field in four dimensions, which has the form[69, 94]

S =

∫
d4x
√
−g
[
F (φ)

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm (4.1)

where Sm is the action related to the Lagrangian L [ψm; gµν ] of the matter source.
As we mentioned earlier, there are two basic methods in order to derive the equations of

motion from a given action. Once again, in this section, we will prove the dynamical equation,
i.e. the equations of motion using both methods.

4.1.1 First Method: Variation of the Action with General Metric

Let us start by varying the action. In order to calculate the dynamical equations we will use
the identities that we have already proven in Appendix A

δR = Rµνδg
µν +∇σ

(
gµνδΓσµν − gµσδΓρρµ

)
(4.2)

δ
√
−g = −1

2

√
−ggµνδgµν (4.3)

Next, it is straightforward to prove that1

gµνδΓσµν = −∇aδg
aσ +

1

2
gaβ∇σδgaβ (4.4)

1For the analytical proof of these equations see Appendix B
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and

gµσδΓλλµ = −1

2
gaβ∇σδgaβ (4.5)

which implies that

δR = Rµνδg
µν −∇σ∇aδg

aσ + gaβ∇σ∇σδgaβ = Rµνδg
µν −∇µ∇νδg

µν + gµν∇σ∇σδgµν (4.6)

Returning to the variation of the action with respect to the inverse metric and using Eq.(4.2)-
(4.6), one can see that

δS = 0⇒
∫
d4x δ

√
−g
[
F (φ)

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
+ δSmatter+

+

∫
d4x
√
−g
[
F (φ)δR− 1

2
δgµν∂µφ∂νφ

]
= 0⇒

⇒
∫
d4x
√
−g
[
− 1

2
gµν

(
F (φ)

2
R− 1

2
gaβ∂aφ∂βφ− V (φ)

)
+

δSm√
−gδgµν

+
F (φ)

2
Rµν −∇µ∇ν

F (φ)

2
+

+gµν∇σ∇σF (φ)

2
− 1

2
∂µφ∂νφ

]
δgµν = 0⇒ −F (φ)

2

gµν
2
R +

1

4
gµνg

aβ∂aφ∂βφ+
V (φ)

2
gµν−

−
Tmatterµν

2
+
F (φ)

2
Rµν −∇µ∇ν

F (φ)

2
+ gµν∇σ∇σF (φ)

2
− 1

2
∂µφ∂νφ = 0

× 2
F (φ)

===⇒ Rµν −
1

2
gµνR+

+
1

2F (φ)
gµνg

aβ∂aφ∂βφ+
V (φ)

F (φ)
gµν −

Tmatterµν

F (φ)
− 1

F (φ)
∇µ∇νF (φ) +

gµν
F (φ)

∇σ∇σF (φ)− 1

F (φ)
∂µφ∂νφ = 0

⇒ F (φ)Gµν = Tmatterµν +∇µ∇νF (φ) + ∂µφ∂νφ−
1

2
gµνg

aβ∂aφ∂βφ− V (φ)gµν − gµν∇σ∇σF (φ)

(4.7)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor. Eq.(4.7) represents the generalised Einstein’s

equations for the case of modified gravity.
An alternative form for Eq.(4.7) is

Gµν =
1

F (φ)
(Tmatterµν + T (φ)

µν ) =
1

F (φ)
T totalµν (4.8)

where T
(φ)
µν = ∇µ∇νF (φ) + ∂µφ∂νφ− 1

2
gµνg

aβ∂aφ∂βφ− V (φ)gµν − gµν∇σ∇σF (φ). The term
1

F (φ)
is playing the role of the effective gravitational constant 8πGeff in this theory. If we look more
carefully, the “new Newton’s constant” presents dynamics which can solve the physical origin of
the scalar field problem. Here, the tensor T

(m)
µν is the standard perfect fluid matter source (we

consider the matter fluid presurreless) and T
(φ)
µν is the energy-momentum tensor relative to the

scalar field. Hence we can see clearly once more that in our model the universe consists of matter
and a scalar field which plays the role of dark energy.

As we have proven in Eq.(4.8) the term
1

F (φ)
is playing the role of the effective gravitational

constant 8πGeff in this theory. However this particular equation hold true only for this kind of
scalar tensor quintessence models. In scalar-tensor theories, in general, the effective Newton’s
constant with respect to the redshift z is given by[47, 96]

Geff =
1

F (φ)

2F + 4
(
dF
dφ

)2

2F + 3
(
dF
dφ

)2





4.1. Dynamical Cosmological Equations in Scalar Tensor Quintessence 32

After some manipulation we obtain the final result

Geff =
1

F (φ)

F (φ) + 2
(
dF
dφ

)2

F (φ) + 3
2

(
dF
dφ

)2 ∝
1

F (φ)
(4.9)

The approximation in the above equation is for consistency with solar system tests, which indicate
that dF

dφ
∼ dF

dz
∼ 0(see [97, 98]) and holds true only for low redshifts.

Now, in order to produce the first dynamical equation, we consider the (00) component of
Eq.(4.7). Fixing the homogenous and isotropic FRW metric and using the metric tensor notation
gµν = (−,+,+,+)2 with calculations similar to those of Chapter 2 we derive that R00 = −3 ä

a
and

R = 6
(
ä
a

+ ȧ2

a2

)
. Thus Eq.(4.7) for the (00) component can be written as(

R00 −
1

2
g00R

)
F (φ) = Tmatter00 +∇0∇0F (φ) + ∂0φ∂0φ−

1

2
g00g

00∂0φ∂0φ− V (φ)g00 − g00�F (φ)

(4.10)
where � = ∇σ∇σ is the d’Alembertian operator. Let us now calculate the Left-Hand Side(LHS)
and Right-Hand Side(RHS) of Eq.(4.10) separately

LHS = F (φ)

[
−3

ä

a
+ 3

(
ä

a
+
ȧ2

a2

)]
= 3F (φ)

ȧ2

a2

RHS = ρm − 3
ȧ

a
Ḟ + φ̇2 − 1

2
φ̇2 + V (φ)

Hence demanding LHS=RHS we derive[69, 94]

3F (φ)H2 = ρm +
φ̇2

2
+ V (φ)− 3HḞ (4.11)

where H = ȧ
a
.

Accordingly, for the (11) component we obtain (we study again the LHS and RHS of Eq.(4.10)
setting µ = ν = 1)

LHS = F (φ)

[
R11 −

1

2
g11R

]
= F (φ)

[
aä+ 2ȧ2 − 1

2
(a2)R

]
=

= F (φ)
[
aä− 3äa+ 2ȧ2 − 3ȧ2

]
= F (φ)

[
−2aä− ȧ2

]
RHS =�

��>
0

Tm11 +∇1∇1F (φ) +���
��:0

∂1φ∂1φ−
1

2
g11g

00∂0φ∂0φ− V (φ)g11 − g11∇σ∇σF (φ) =

= −∂κF (φ)Γκ11 +
1

2
a2φ̇2 − a2V (φ)− g11

(
∂σ∂

σ + Γσσλ∂
λ
)
F (φ) =

= −ḞΓ0
11 +

a2

2
φ̇2 − a2V (φ)− g11g

00∂0∂0F (φ)− 3g11
ȧ

a
∂0F (φ) =

= −Ḟ aȧ+
a2

2
φ̇2 − a2V (φ) + a2F̈ + 3aA2

ȧ

Za
Ḟ =

= 2Ḟ aȧ+
a2

2
φ̇2 − a2V (φ) + a2F̈

2This notation is adopted for the rest of this thesis
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Hence demanding LHS=RHS we see that

F (φ)
[
−2äa− ȧ2

]
= 2Ḟ aȧ+

a2

2
φ̇2−a2V (φ) +a2F̈

:a2

=⇒ F (φ)

[
−2

ä

a
− ȧ2

a2

]
= 2Ḟ

ȧ

a
+
φ̇2

2
−V (φ) + F̈

(4.12)
However, Eq.(4.11) imposes that

− V = ρm +
φ̇2

2
− 3F

ȧ2

a2
− 3

ȧ

a
Ḟ (4.13)

Consequently, substituting Eq.(4.13) to Eq.(4.12) one can derive[69, 94]

−2F
ä

a
− F ȧ

2

a2
= 2Ḟ

ȧ

a
+

1

2
φ̇2 + ρm +

φ̇2

2
− 3F

ȧ2

a2
− 3

ȧ
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Ḟ + F̈

−2F (φ)

(
ä

a
− ȧ2

a2

)
= ρm + φ̇2 + F̈ −HḞ (4.14)

Finally, we will vary the action with respect to the φ field, in order to derive the Klein-Gordon
equation for the case of the modified gravity. Once again the action principle tells us that the
variation of this action with respect to the φ field is zero

δS = 0⇒
∫
d4x
√
−g
[
R

2
δF (φ)− δV (φ)− 1

2
δ (gµν∇µφ∇νφ)

]
= 0

⇒
∫
d4x
√
−g
[
R

2
δF (φ)− δV (φ) +

�2

�2
gµν∇µ∇νφδφ

]
= 0

⇒
∫
d4x
√
−g
[
R

2

dF (φ)

dφ
− dV (φ)

dφ
+∇µ∇µφ

]
dφ = 0⇒ R

2
Fφ − Vφ +∇µ∇µφ = 0⇒

⇒ −∇µ∇µφ+ Vφ =
Fφ
2
R⇒ φ̈+ 3

ȧ

a
φ̇+ Vφ = Fφ

R

2
(4.15)

and substituting the Ricci scalar R = 6
(
ä
a

+ ȧ2

a2

)
in Eq.(4.15) we obtain[69, 94]

φ̈+ 3
ȧ

a
φ̇+ Vφ =

6

2

(
ä

a
+
ȧ2

a2

)
Fφ ⇒

φ̈+ 3
ȧ

a
φ̇− 3

(
ä

a
+
ȧ2

a2

)
Fφ + Vφ = 0 (4.16)

4.1.2 Second Method: Variation of the action with FRW metric

In this section we will use an alternative way[62, 63] to derive Eq.(4.11), Eq.(4.14) and
Eq.(4.16), i.e. the equations of motion. That is the Lagrangian method. Let us assume, as before,
that the spacetime manifold is described by a flat FRW metric, that is homogenous and isotropic.

Also we preserve the same notation as before, i.e. gµν = (−,+,+,+) and R = 6
(
ä
a

+ ȧ2

a2

)
. As a

result the general action is written

S =

∫
d4x
√
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F (φ)

2
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a
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2
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]
=

=
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√
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ä

a
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=

=
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a
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ȧ2
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Using, now, the “transformation” of derivatives for ä one can obtain that ä = d
dt
ȧ = d

dφ
dφ
dt
ȧ =

d
dφ

(
ȧφ̇
)

. Thus the action of modified gravity can be written as
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+
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∣∣∣∞
−∞
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+
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− V (φ) + Lm

]
=
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∫
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√
−g

a

)
+

∫
d3x dt

√
−g

[
3F (φ)

ȧ2

a2
+
φ̇2

2
− V (φ) + Lm

]
=

= −
∫
d3x dt 3ȧ

[√
−g
a

Ḟ + F
d

dt

(√
−g
a

)]
+

∫
d3x dt

√
−g

[
3F (φ)

ȧ2

a2
+
φ̇2

2
− V (φ) + Lm

]
=

= −
∫
d3x dt 3ȧ

[√
−g
a

Ḟ + F
d

dt
a2

]
+

∫
d3x dt

√
−g

[
3F (φ)

ȧ2

a2
+
φ̇2

2
− V (φ) + Lm

]
=

= −
∫
d3x dt 3ȧ

[√
−g
a

Ḟ + 2Faȧ

]
+

∫
d3x dt

√
−g

[
3F (φ)

ȧ2

a2
+
φ̇2

2
− V (φ) + Lm

]
=

=

∫
d3x dt a3

[
−6

ȧ2

a3
aF − 3Ḟ

ȧ

a
+ 3F (φ)

ȧ2

a2
+
φ̇2

2
− V (φ) + Lm

]

=

∫
d3x dt

√
−g

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ) + Lm

]
(4.17)

Considering that the action is typically represented an integral over time, S =
∫
dtL , where

L is the Lagrangian density we deduce that

Ltotal =
√
−g

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)

]
+ Lm

where the standard matter contribution acts essentially as a density term, i.e. Lm = −
√
−gρm.

Here we have to mention that during our calculation we considered a homogenous spacetime,
therefore neglecting the volume. Also that

√
−g = a3. Consequently the final Lagrangian takes

the form

Ltotal = a3

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)− ρm

]
(4.18)

Eq.(4.18) can be seen as a “point-like” Lagrangian on the configuration space (a,φ). For this
reason, we can solve the problem as an exercise of classical mechanics calculating the “Euler-
Lagrange” equations. Let us remind that the energy function relative to L is given by

Et =
∂L

∂ȧ
ȧ+

∂L

∂φ̇
φ̇−L (4.19)



4.1. Dynamical Cosmological Equations in Scalar Tensor Quintessence 35

Now, we will express our Lagrangian density as follows

Ltotal =
√
−g

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)− ρm

]
= a3

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)− ρm

]
=

= −3F (φ)ȧ2a− 3ȧa2Ḟ + a3

(
φ̇2

2
− V (φ)− ρm

)
From the above equation we observe that L has no explicit time dependence, therefore the

energy function relative to L is conserved. From the equations of motion one can deduce that
this constant plays the role of the curvature. However we have assumed a flat Universe, therefore
this constant should be equal to zero. It is straightforward, then, to obtain Eq.(4.11), as follows

Et = 0⇒ ∂L

∂ȧ
ȧ+

∂L

∂φ̇
φ̇−L = 0⇒

⇒
(
−3Ḟ a2 − 6F ȧa

)
ȧ+

(
−3a2ȧFφ + a3φ̇

)
φ̇+ 3F (φ)ȧ2a+ 3ȧa2Ḟ − a3

(
φ̇2

2
− V (φ)− ρm

)
= 0⇒

⇒ −3Ḟ a2ȧ− 6F ȧ2a−XXXXX3a2ȧφ̇Fφ + a3φ̇2 + 3F ȧ2a+
XXXX3ȧa2Ḟ − a3

(
φ̇2

2
− V (φ)− ρm

)
= 0⇒

⇒ −3Ḟ a2ȧ− 3F ȧ2a+ a3

(
φ̇2

2
+ V (φ) + ρm

)
= 0

:a3

=⇒ −3Ḟ
ȧ

a
− 3F

ȧ2

a2
+
φ̇2

2
+ V (φ) + ρm = 0⇒

⇒ 3F (φ)H2 = ρm +
φ̇2

2
+ V (φ)− 3HḞ (4.20)

Next we will calculate the “Euler-Lagrange” equation for a, relative to L , using Eq.(4.18), as
follows

d

dt

(
∂L

∂ȧ

)
=
∂L

∂a
(4.21)

Let us calculate each term separately

∂L

∂ȧ
=
√
−g

[
−6

ȧ2

a2
F − 3

Ḟ

a

]
= a3

[
−6

ȧ2

a2
F − 3

Ḟ

a

]
= −6aȧF (φ)− 3Ḟ a2

d

dt

(
∂L

∂ȧ

)
= −6ȧ2F (φ)− 6aäF (φ)− 6aȧḞ − 3

dφ

dt

d

dφ
Fφφ̇a

2 − 6Ḟ aȧ =

= −6ȧ2F (φ)− 6aäF (φ)− 12Ḟ aȧ− 3F̈ a2

∂L

∂a
=
∂
√
−g
∂a

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)− ρm

]
+
√
−g ∂

∂a

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)− ρm

]
=

= 3a2

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)− ρ0,m

a3

]
+ a3

[
6
ȧ2

a3
F (φ) + 3

ȧ

a2
Ḟ + 3

ρ0,m

a4

]
=

= 3a2

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)− ρ0,m

a3

]
+ 6ȧ2F (φ) + 3ȧaḞ + 3

ρ0,m

a

= 3a2

[
−3

ȧ2

a2
F (φ)− 3

ȧ

a
Ḟ +

φ̇2

2
− V (φ)−@@

@

ρ0,m

a3
+ 2

ȧ2

a2
F +

ȧ

a
Ḟ +@@

@

ρ0,m

a3

]
=
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= 3a2

[
− ȧ

2

a2
F (φ)− 2

ȧ

a
Ḟ +

φ̇2

2
− V (φ)

]
= −3ȧ2F − 6aȧḞ +

3a2

2
φ̇− 3a2V (φ)

where we used the fact that

F̈ =
d

dt
Ḟ =

d

dt

(
Fφ · φ̇

)
=
dφ

dt

d

dφ
Fφφ̇

Then, Eq.(4.21) can be written as

d

dt

(
∂L

∂ȧ

)
=
∂L

∂a
⇒ −6ȧ2F (φ)− 6aäF (φ)− 12Ḟ aȧ− 3F̈ a2 = −3ȧ2F − 6aȧḞ +

3a2

2
φ̇− 3a2V (φ)⇒

⇒ −3ȧ2F (φ)− 6aäF (φ)− 6Ḟ aȧ− 3F̈ a2 =
3a2

2
φ̇− 3a2V (φ)

:3a2

==⇒

:3a2

==⇒ − ȧ
2

a2
F (φ)− 2

ä

a
F (φ)− F̈ − 2Ḟ

ȧ

a
=
φ̇2

2
− V (φ)⇒ φ̇2

2
− V (φ) + F̈ + 2F

ȧ

a
= F (φ)

[
−2

ä

a
− ȧ2

a2

]
(4.22)

Taking in consideration, Eq.(4.13) it is trivial to obtain Eq.(4.14) as follows

−2F (φ)
ä

a
− F ȧ

2

a2
= 2Ḟ

ȧ

a
+

1

2
φ̇2 + ρm +

φ̇2

2
− 3F

ȧ2

a2
− 3

ȧ

a
Ḟ + F̈

⇒ −2F (φ)

(
ä

a
− ȧ2

a2

)
= ρm + φ̇2 + F̈ −HḞ (4.23)

Similarly, the “Euler-Lagrange” equation for the scalar field φ is

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ
(4.24)

Studying each term separately as before we obtain

∂L

∂φ̇
=

(
−3

ȧ

a
Fφ + φ̇

)
a3 = −3ȧa2Fφ + a3φ̇

d

dt

(
∂L

∂φ̇

)
= −3äa2Fφ − 6ȧ2aFφ − 3ȧa2φ̇Fφφ + 3a2φ̇ȧ+ a3φ̈

∂L

∂φ
=
√
−g
[
−3

ȧ2

a2
Fφ − 3

ȧ

a
Fφφφ̇− Vφ

]
= −3aȧ2Fφ − 3ȧa2Fφφφ̇− a3Vφ

Therefore, we derive the “Euler-Lagrange” equation for the scalar field

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ
⇒ −3äa2Fφ − 6ȧ2aFφ −

XXXXXX3ȧa2φ̇Fφφ + 3a2φ̇ȧ+ a3φ̈ = −3aȧ2Fφ −
XXXXXX3ȧa2Fφφφ̇− a3Vφ ⇒

⇒ −3äa2Fφ − 3ȧ2aFφ + 3a2φ̇ȧ+ a3φ̈ = −a3Vφ
:a3

=⇒ −3
ä

a
Fφ − 3

ȧ2

a2
Fφ + 3

ȧ

a
φ̇+ φ̈+ Vφ = 0⇒

⇒ φ̈+ 3
ȧ

a
φ̇− 3

(
ä

a
+
ȧ2

a2

)
Fφ + Vφ = 0 (4.25)

i.e Eq.(4.16).
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From our calculation, we conclude that regardless of what method we follow we end up to the
same equations. The equations of motion for the case of modified gravity are summarised in the
table below

Equations of Motion For Modified Gravity

3F (φ)H2 = ρm +
φ̇2

2
+ V (φ)− 3HḞ

−2F (φ)

(
ä

a
− ȧ2

a2

)
= ρm + φ̇2 + F̈ −HḞ

φ̈+ 3
ȧ

a
φ̇− 3

(
ä

a
+
ȧ2

a2

)
Fφ + Vφ = 0

Only the two out of three equations are independent and the third one can be used as a
constraint in the solution derived from the other two.

Next let us rescale the dynamical equation with respect with the present day Hubble parameter
H0 (setting H = H̄H0, t = t̄

H0
, V = V̄ H0

2 and ρm = ρ̄mH0
2). Thus Eq.(4.11) can be written as

3F (φ)H̄2 = ρ̄m +
φ̇2

2
+ V̄ − 3H̄Ḟ ⇒ 3F (φ)H̄2 =

ρm

H0
2 +

φ̇2

2
+ V̄ − 3H̄Ḟ (4.26)

and considering a universe which contains matter and dark energy we obtain

Ωm =
ρm

3FH̄2H0
2 ⇒ Ω0m =

ρ0m

3F0H̄2
0H0

2

H̄2
0=1

===⇒ Ω0m =
ρ0m

3F0H0
2 (4.27)

In a similar way, we derive for the φ field

Ωφ =
1

3FH̄2

(
φ̇2

2
+ V̄ − 3H̄Ḟ

)
=

1

3FH̄2

(
φ̇2

2
+ V̄

)
− �3@@̄H

�3H̄A2
Ḟ

F
=

1

3FH̄2

(
φ̇2

2
+ V̄

)
− 1

H̄

Ḟ

F
⇒

⇒ Ω0φ =
1

3F0H̄2
0

(
φ̇0

2

2
+ V̄0

)
− 1

H̄0

Ḟ0

F0

H̄0=1
===⇒ Ω0φ =

1

3F0

(
φ̇0

2

2
+ V̄0

)
− Ḟ0

F0

(4.28)

Next, let us rewrite Eq.(4.11) and Eq.(4.14) in the rescaled form as follows

3F (φ)H̄2 = ρ̄m +
φ̇2

2
+ V̄ (φ)− 3H̄Ḟ (4.29)

−2F (φ)

(
ä

a
− ȧ2

a2

)
= ρ̄m + φ̇2 + F̈ − H̄Ḟ (4.30)

Consequently, one could obtain the rescaled dynamical equation for the scale factor

−2F (φ)

(
ä

a
− ȧ2

a2

)
= ρ̄m + φ̇2 + F̈ − H̄Ḟ ⇒ ä

a
=
ȧ2

a2
− ρ̄m

2F
− φ̇2

2F
− F̈

2F
+ H̄

Ḟ

2F

But from Eq.(4.29) we obtain

ȧ2

a2
= H̄2 =

ρ̄m
3F

+
φ̇2

6F
+

V̄

3F
− H̄ Ḟ

F
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therefore

ä

a
=
ρ̄m
3F

+
φ̇2

6F
+

V̄

3F
− H̄ Ḟ

F
− ρ̄m

2F
− φ̇2

2F
− F̈

2F
+ H̄

Ḟ

2F
⇒

⇒ ä

a
= − ρ̄m

6F
− φ̇2

3F
+

V̄

3F
− F̈

2F
− H̄ Ḟ

2F
⇒ ä

a
= − ρm

6FH0
2 −

φ̇2

3F
+

V̄

3F
− F̈

2F
− H̄ Ḟ

2F

Eq.(4.27)
=====⇒

⇒ ä

a
= − ρ0m

3F0H0
2

F0

2Fa3
− φ̇2

3F
+

V̄

3F
− F̈

2F
− H̄ Ḟ

2F
⇒ ä

a
= −Ω0mF0

2Fa3
− φ̇2

3F
+

V̄

3F
− F̈

2F
− H̄ Ḟ

2F
(4.31)

Of course, setting F = F0 = Mp = (8πG)−1/2 = 1 we recover Eq.(3.11) and Eq.(3.15) as it was
expected. With this we conclude our theoretical framework of the modified gravity case and we
are free to proceed to the final chapter of the thesis where we we consider observational tests
constraining scalar field evolution parameters.



Chapter 5

Observationals Tests

As we have already discussed, recent cosmological data indicate that the universe has recently
entered a phase of accelerating expansion attributed to an unknown component called dark en-
ergy, which can induce repulsive gravity and thus cause accelerated expansion. This unknown
component represents the 74% of our universe.

Several models have been proposed to explain the nature of dark energy, which can be classified
essentially into two groups

� The first class assumes that GR is valid at cosmological scales and attributes the accelerating
expansion to a dark energy component which has repulsive gravitational properties due to
its negative pressure. The role of dark energy is usually played by a scalar field minimally
coupled to gravity called quintessence. Alternatively, the role of dark energy can be played
by various perfect fluids (eg Chaplygin gas[51, 52]) topological defects[99], holographic dark
energy[45, 100, 101] etc.)

� The second class of models attributes the accelerating expansion to modifications and ex-
tensions of GR, which converts gravity to a repulsive interaction at late times and on cosmo-
logical scales, such as scalar-tensor theories, f(R) extended gravity theories[102], braneworld
models[103] etc.

In the first section of this chapter we will make a short introduction in the observational
cosmology and describe the basic quantities used in astronomy. Next we will focus on the first
class of models, i.e quintessence models and investigate the goodness of fit to the Union2.1 and
Gold Dataset for this kind of category. In the final sections of the chapter we will investigate the
cosmological dynamics for general scalar tensor quintessence field and find the goodness of fit to
the Union2.1 dataset, i.e focus on the second category of models.

5.1 Observational Probes for Cosmological Observations

The accelerated expansion have been attributed either to DE or generalised theories of grav-
ity. Both of these models have some characteristic predictions. These predictions concern the
calculation of H(z) and Geff (z). These predictions can be categorised into two groups[104]

� Geometric Probes: These kind of methods detect the geometry of the Universe in large
scales and measure the equation of state parameter using cosmological distances, such as
luminosity distance[76, 77] as a function of the redshift and the baryon acoustic oscilla-
tions[105].

39
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� Dynamical Probes: These kind of methods detect the dynamical evolution of density pertur-
bations as an independent test of dark energy and general relativity, such as the gravitational
lensing measurements[106]. An example of such a dynamical probe is the growth function of
the linear matter density contrast defined as δ ≡ δρm

ρm
, where ρm represents the background

matter density and δρm its first order perturbation. In many classes of modified gravity the
growth factor δ(a) satisfies the following equation[107]

δ′′(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′(a)− 3

2

ΩmGeff (k, a)/GN

a5H(a)2/H0
2

(5.1)

where primes denote differentiation with respect to the scale factor and H(a) = ȧ
a

is the
Hubble parameter and Geff (a, k) is the effective Newton’s constant which is constant and
equal to GN in GR. In modified gravity theories Geff depends on both the scale factor a (or
equivalently the redshift z) and the scale k. From dynamical probes we obtain information
for Geff (k, a) and H(a) simultaneously. Eq.(5.1) is an equation with two unknown quanti-
ties, H(a) and Geff (k, a). However from geometrical probes one could calculate H(a) and
substituting this in Eq.(5.1) we could calculate Geff (k, a). In reality a robust measurable
quantity in redshift surveys is not the growth factor δ(a) but the combination

fσs(a) ≡ f(a) · σ(a) =
σ(s)

δ(1)
a · δ′(a)

where f(a) = dlnδ
dlna

is the growth rate and σ(a) = σs
δ(a)
δ(1)

is the redshift-dependent rms

fluctuations of the linear density field within spheres of radius R = 8h−1Mpc while the
parameter σs is its value today. A more detail analysis for the dynamical probes exceeds the
purpose of this thesis since we focus on the geometrical probes(for more details concerning
the dynamical probes see Ref.[107])

In cosmology the most direct way to detect dark energy geometrically, comes from measure-
ments of supernovae Ia explosions. These supernovae explosions are caused by binary systems
in which a compact object, usually a white dwarf, accumulates material from a companion star
creating the so-called accretion disk

Figure 5.1: The accretion disk that is created around a compact object (The picture can be found
in Ref.[108] and was used after permission of the author).

At a certain moment, the white dwarf will reach a critical mass, the Chandrasekhar limit[109].
The white dwarf is progressively compressed, and eventually sets off a runaway nuclear reaction
inside that eventually leads to a cataclysmic supernova outburst.
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Astronomical objects with a known luminosity, so called standard candles, enables us to mea-
sure the luminosity distance dL and the redshift z simultaneously. So under the assumption that
supernovae Ia explosions,and thus the related luminosities, are drawn from the same statisti-
cal sample, they can be considered as standard candles1. Measuring these quantities gives an
expansion rate of the universe and leads to a density parameter ΩΛ ≈ 0.7.

First of all, let us consider a luminous cosmological object emitting at total power L in
radiation within a particular wavelength band. Also, one can imagine an observer at a distance
dL from the luminous object as it can be seen in the figure below

Figure 5.2: The luminosity distance of a luminous object (The picture can be found in Ref.[112]
and was used after permission of the author.)

The function dL is called a “distance” because its dimensionality is that of a distance, and
because it is what the proper distance to the standard candle would be if the Universe were static
and euclidean. In a static euclidean Universe, the propagation of light follows the inverse square
law using the flux f as follows[113]

f =
L

4πdL
2 (5.2)

However our Universe is not static and euclidean and it is described by the FRW metric, i.e
Eq.(2.15). When we observe a distant galaxy, we know its angular position very well, but not
its distance. That is, we can point in its direction, but we don’t know its comoving coordinate
distance d. We can, however, measure the redshift z of the light we receive from the galaxy.
Setting c = 1, the comoving distance d is given by the formula d =

∫ t0
te

dt
a(t)

and holds true in any
universe whose geometry is described by a flat FRW metric

d =

∫ t0

te

dt

a(t)
=

∫ t0

te

1

a

dt

da
da =

∫ a(t0)

a(te)

1

a

1

ȧ
da

a(t0)=1
====⇒

∫ 1

a(te)

da

H a2
=

∫ 1

a(te)

1

H a2

da

dz
dz (5.3)

where te is the emission time. However the redshift z can be defined as

1 + z =
a(t0)

a(te)
⇒ 1 + z =

1

a
⇒ dz = −da

a2
⇒ da

dz
= −a2 (5.4)

1There are other possible candles that have been proposed and are actively being investigated. One such
approach has been to use FRIIb radio galaxies[110]. Another suggested standard candle is that of Gamma Ray
Bursts (GRB), which may enable the expansion rate of our Universe to be measured out to very high redshifts[111].



5.1. Observational Probes for Cosmological Observations 42

Substituting Eq.(5.4) in Eq.(5.3), it is trivial to show that[114]

d = −
∫ 0

z(te)

1

H(z)��a
2
��a

2dz ⇒ d =

∫ z(te)

0

dz

H(z)
(5.5)

Nevertheless in a Universe characterized by an expansion a(t), the object (standard candle),
is not stationary, so the energy of photons emitted at time te is redshifted by the factor (1 + z) =
a−1(te). Moreover, the arrival rate of the photons suffers time dilation by another factor (1 + z),
often called the energy effect. In that Universe the flux is given by[113]

f =
L

4πd2(1 + z)2
(5.6)

Comparing Eq.(5.2) and Eq.(5.6), the luminosity distance is defined as dL = d(1+z), therefore
one can easily derive that, for a flat Universe

dL = (1 + z)

∫ z(te)

0

dz′

H(z′)
(5.7)

Eq.(5.3) is valid only for a flat Universe. Let us provide for completeness the methodology
for a non flat Universe. Light that was emitted by a distant galaxy at a time te is observed by
us at a time t0. During its travel from the distant galaxy to us, the light travelled along a null
geodesic, with ds = 0. A null geodesic has θ and φ constant since we conside a homogeneous and
isotropic Universe. Therefore considering Eq.(2.15) we derive[113]∫ t0

te

dt

a(t)
= −

∫ 0

re

dr√
1− kr2

(5.8)

where re is the distance of the distant galaxy to us. Let us now focus on the right hand side
of Eq.(5.8) setting the three values of the scalar curvature which describe an open, a flat and a
closed Universe

� k = 1: This particular case corresponds to an open Universe and Eq.(5.8) is written as

−
∫ 0

re

dr√
1− r2

= −
∫ 0

re

d (arcsin(r)) = −����
��:0

arcsin(0) + arcsin(re) = sin−1(re) = sin−1(d)

(5.9)
Therefore, Eq.(5.8) is rewritten as

sin−1(d) =

∫ t0

te

dt

a(t)
⇒ d = sin

(∫ t0

te

dt

a(t)

)
= sin

(∫ z(te)

0

dz

H(z)

)
(5.10)

Hence the luminosity distance for an open Universe is

dL = (1 + z)sin

(∫ z(te)

0

dz

H(z)

)
(5.11)

� k = 0: This case describes a flat Universe and following the same procedure we obtain
Eq.(5.7)
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� k = −1: The final value of the scalar curvature describes a closed Universe. For that case
Eq.(5.8) takes the following form

−
∫ 0

re

dr√
1 + r2

= −
∫ 0

re

d (arcsinh(r)) = −����
���:0

arcsinh(0)+arcsinh(re) = sinh−1(re) = sinh−1(d)

(5.12)
As a result, Eq.(5.8) is rewritten as

sinh−1(d) =

∫ t0

te

dt

a(t)
⇒ d = sinh

(∫ t0

te

dt

a(t)

)
= sinh

(∫ z(te)

0

dz

H(z)

)
(5.13)

Hence the luminosity distance for an open Universe is

dL = (1 + z)sinh

(∫ z(te)

0

dz

H(z)

)
(5.14)

Now assuming the Universe to be composed of a set of independent components having density
parameters Ωi ≡ ρi/ρcrit, the Friedmann equation for a flat FRW universe, may be expressed as(

ȧ

a

)2

= H0
2
∑
i

Ωi

(a0

a

)3 (1+wi)

(5.15)

where H0 ≡ H(t0) is the present time value of the Hubble parameter, a0 ≡ a(t0) is the current
value of the scale parameter and the equation of state for each component is given by

pi = wiρi. (5.16)

Now rewriting Eq.(5.15) in terms of the redshift one can see that(
ȧ

a

)
= H2 = H2

0

∑
i

Ωi(1 + z)3(1+wi) (5.17)

which combined with Eq.(5.7) gives[80]

dL =
1 + z

H0

∫ z

0

dz′√∑
i Ωi(1 + z′)3(1+wi)

(5.18)

Measurements of the luminosity distance and the redshift can be compared with the theoretical
function of dL, i.e Eq.(5.18). Astronomers usually replace the flux f and the total power L by two
empirically defined quantities, the absolute magnitude M of a luminous object and the apparent
magnitude m. Let us define these quantities in order to be consistent.

The apparent magnitude of a light source in terms of intensity l, or flux f2, as[115]

m = −2.5log10
l

lx
(5.19)

2For SnIa (the type of stars that we focus on) the flux f and the intensity l are practically the same because
the angle θ is small.
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where lx is set as a value lx = 2.53× 10−8wattm−2. Next let us consider two stars, namely 1 and
2 and taking the difference of their apparent magnitude we obtain

m1 −m2 = −2.5log10
l1
lx

+ 2.5log10
l2
lx

= −2.5log10
l1
lx
− 2.5log10

lx
l2
⇒

⇒ m1 −m2 = −2.5log10
l1
l2

(5.20)

Now we define the absolute magnitude M , which is a constant for type Ia supernovae, as the
apparent magnitude of the same star at 10 parsec, therefore

m−M = −2.5log10
l(z)

L
, where L = l2 ⇒ m−M = 2.5log10

L

l(z)

But one can be define intensity in terms of luminosity L , as l = L
4πd2

L
, hence

m−M = −2.5log10

��L
ZZ4π102

��L
ZZ4πd2

L

⇒ m−M = 2.5log10
d2
L

102
⇒ m−M = 5log10

dL(z)obs
10pc

⇒

⇒ m−M = 5log10
dL(z)obs

10−5Mpc
= 5

(
log10dL(z)obs − log1010−5 − log10Mpc

)
⇒

⇒ m(z)−M − 25 = 5log10
dL(z)obs
Mpc

(5.21)

Eq.(5.21) can be re-expressed taking in account the corresponding Hubble free luminosity
distance Dth

L (z),which is defined as DL = H0dL
c

, through

mth = M̄(M,H0) + 5log10 (DL(z; a1, a2, . . . , an)) (5.22)

In a flat cosmological model

Dth
L (z; a1, a2, . . . , an) = (1 + z)

∫ z

0

dz′
H0

H(z′; a1, a2, . . . , an)
(5.23)

where “th” stands for theoretical, the quantities (H0dL) , a1, a2, . . . , an are the parameters of our
theoretical model and M̄ is the magnitude zero point offset. The proof of Eq.(5.22) is trivial.
In order to derive it we will need the connection between the luminosity distance dL and the
corresponding Hubble free luminosity distance DL(z)

DL =
H0dL
c
⇒ dL =

c ·DL

H0

(5.24)

Substituting Eq.(5.24) in Eq.(5.21) one can see

m(z)−M − 25 = 5log10

(
dL(z)obs
Mpc

)
⇒ m(z)−M − 25 = 5log10

(
c·DL
H0

Mpc

)
⇒

⇒ m(z) = M + 25 + 5log10

(
c ·DL

H0

)
− 5log10(1Mpc)⇒

⇒ m(z) = M + 25 + 5log10DL + 5log10(cH−1
0 ) + 5log10

(
1

1Mpc

)
⇒

⇒ m(z) = M + 25 + 5log10(DL) + 5log10

(
cH−1

0

1Mpc

)
⇒

⇒ m(z; a1, . . . , an) = M̄(M,H0) + 5log10 (DL(z; a1, . . . , an)) where M̄ = M + 5log10

(
cH−1

0

1Mpc

)
+ 25

(5.25)
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Eq(5.25) can be written in a more convenient form using the dimensionless parameter for the
Hubble constant as follows

m(z; a1, a2, . . . , an) = M̄(M,h)+5log10 (DL(z; a1, a2, . . . , an)) where M̄(M,h) = M−5log10h+42.38
(5.26)

For the derivation of Eq.(5.26) we define the dimensionless parameter for the Hubble constant
as

h =
H

100 (km/sec) /Mpc
(5.27)

Therefore Eq.(5.25) can be written as

m(z; a1, a2, . . . , an) = M + 5log10

(
cH−1

0

1Mpc

)
+ 25 + 5log10 (DL(z; a1, a2, . . . , an))⇒

⇒ m(z; a1, a2, . . . , an) = M + 5log10

(
c

H0Mpc

)
+ 25 + 5log10 (DL(z; a1, a2, . . . , an))

Eq.(5.27)
=====⇒

⇒ m(z; a1, a2, . . . , an) = M + 5log10

(
c

100hMpc km
s·Mpc

)
+ 25 + 5log10 (DL(z; a1, a2, . . . , an))⇒

⇒ m(z; a1, a2, . . . , an) = M + 5log10

(
3× 105@

@
km
s

102@
@
km
s

)
− 5log10h+ 25 + 5log10 (DL(z; a1, a2, . . . , an))⇒

⇒ m(z; a1, a2, . . . , an) = M − 5log10h+ 25 + 5log10

(
3× 103

)
+ 5log10 (DL(z; a1, a2, . . . , an))⇒

⇒ m(z; a1, a2, . . . , an) 'M − 5log10h+ 25 + 17.38 + 5log10 (DL(z; s))⇒
⇒ m(z; a1, . . . , an) = M̄(M,h) + 5log10 (DL(z; a1, . . . , an)) where M̄(M,h) = M − 5log10h+ 42.38

(5.28)

Typically the points of the datasets, are given in terms of the distance modulus

µobs(zi) = mobs(zi)−M (5.29)

The theoretical distance modulus can be associated with the apparent magnitude via the following
equation

µth(zi) = mth(zi)−M = 5log10 (DL(z)) + µ0 (5.30)

where µ0 = 42.38− 5log10h.
Eq.(5.30) can be proven as follows

µth(zi) = mth(zi)−M
Eq.(5.28)
=====⇒M − 5log10h+ 42.38 + 5log10 (DL(z; a1, a2, . . . , an))−M ⇒

⇒ µth(zi) = 5log10 (DL(z)) + µ0 (5.31)

This procedure, has been done for 170 supernovae explosions, by the supernovae cosmology project
(SCP) and the high-z supernovae team (HSST). In 2004 (see [116]) 16 high redshift supernovae
explosions have been observed with the Hubble Space Telescope (HST). Including these data
with the other 170 previously found supernovae explosions[117] it was shown that the universe
exhibited a transition from deceleration to acceleration with a confidence level > 99%3. A best-fit
value for Ω0m was found to be Ω0m = 0.31 and Ω0Λ = 0.69 as it can be seen in the following
Fig.5.3[70]

3See also Refs.[115, 118, 119] for recent papers about the SN Ia data analysis.
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Figure 5.3: The apparent magnitude m(z) versus the redshift z for a flat cosmological model,
using the Gold Dataset[116].

In Fig.5.3 the theoretical curves can be derived from Eq.(5.31). This figure is the same as the
one in Ref.[80]

Another interesting piece of evidence for the existence of dark energy is the Cosmic Microwave
Background (CMB)[5, 120] and the large scale structure formation observations[121, 122]in the
context of ΛCDM. Let us present the CMB method of measurement. In order to do we have to
define another distance, which is commonly used in astronomy, the angular diameter distance dA.
To calculate this distance we need the angle θ subtended by an object of known physical size rs.
The distance to that object (under the assumption of small angle) is

dA(z) =
rs
θ

(5.32)

This distance is called the angular diameter distance. The angular diameter distance in an
expanding Universe we first note that the comoving size of the object is rs

a
, therefore the angle θ

in terms of the comoving distance d is

θ =
rs
a

d
(5.33)

Taking in account Eq.(5.33) the angular diameter distance for an expanding Universe is

dA(z) =
rs
θ
⇒ dA(z) =

rs
rs
a

d

⇒ dA(z) = a · d =
d

1 + z
(5.34)

Now that we have derived the angular diameter distance for an expanding Universe let us prove
that the angular diameter distance is connected with H(z) from the relation that follows

dA(z) =
1

1 + z

∫ z

0

dz′

H(z′)
(5.35)

The proof of Eq.(5.35) is trivial. Setting dr = dφ = dt = 0, c = 1 and considering an FRW
metric we obtain

ds2 = a2 r2 dθ2 ⇒ ds = rs = a(te) · d · dθ ⇒ ds =
1

1 + z

∫ z

0

dz′

H(z′)
θ ⇒ dA =

rs
θ

=
1

1 + z

∫ z

0

dz′

H(z′)
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i.e. Eq.(5.35).
We are thus faced with the following question “What kind of stellar objects that we have to

use?” or “What is the proper physical size of an object in order to taking into account?”. The
most common object that we use is the horizon as it is measured in the time of the last scattering
of the photons using the CMB. The measured[74] angular diameter distance to the horizon rs(zrec)
at recombination is given by Eq.(5.35)

dA(zrec) =
1

1 + zrec

∫ zrec

0

dz′

H(z′)
(5.36)

The expansion history of the Universe is determined by a set of the dimensionless density
parameters

Ω0m + Ω0R + Ω0Λ + Ω0k = 1 (5.37)

where Ω0m is the present mean mass density of non-relativistic matter which mainly consists
of baryons and non-baryonic cold dark matter (CDM), Ω0R is the present mass density in the
relativistic CMB radiation accompanying the low mass neutrinos that almost homogeneously fills
the space, Ω0Λ is the present dark energy density and Ω0k is an effect of the curvature of spacetime.
Using this relation the cross-checks for the existence of dark energy are[123]

� The Universe has to be older than the oldest stars. If there is no cosmological constant
or other form of dark energy, it is not possible to create a universe that is old enough. If
the Universe contains only matter, then the scale factor is given by the relation a(t) ∝ t2/3.
Considering the Hubble constant we derive

H0 =

(
ȧ

a

)
0

=
2

3t0
⇒ t0 =

2

3H0

=
640

H0

×109years =
640

67
×109years⇒ t0 ' 9.5×109years

(5.38)
However this answer is not satisfactory because it is smaller that the older stars. Let us do
the same for the case of matter and ΛCDM and for k = 0

ȧ2

a2
=

8πG

3

(ρ0

a3
+ Λ

)
=

8πG

3
ρc

(
ρ0/ρc
a3

+
Λ

ρc

)
= H0

2

[
a3

0

a3
(1− ΩΛ) + ΩΛ

]
a(t0)=1
====⇒

⇒ H0 =
ȧ

a

1√
1−ΩΛ

a3 + ΩΛ

=
da

dt

√
a√

1− ΩΛ + ΩΛ a3
(5.39)

However H0 t0 =
∫ t0

0
H0dt and substituting Eq.(5.39) one can see

H0t0 =

∫ t0

0

√
a√

1− ΩΛ + ΩΛ a3

da

dt
dt =

∫ a(t0)

0

√
a

1− ΩΛ + ΩΛa3
da =

∫ 1

0

√
a

1− ΩΛ + ΩΛa3
da

(5.40)
and solving Eq.(5.40) we obtain

H0t0 =
2

3
√

ΩΛ

sinh−1

(√
ΩΛ

1− ΩΛ

)
=

2

3
√

0.7
sinh−1

(√
0.7

1− 0.7

)
⇒ t0 = 13.7× 109years

(5.41)

� The angular power spectrum of fluctuations in the temperature of the 3K thermal cosmic
background (CMB) radiation across the sky indicates that Ω0k is almost 0 and Ω0R ≈ 10−4.

� The power spectrum of the spatial distributions of large scale structures give Ω0m ≈ 0.3.

All these observations give the values Ω0m ≈ 0.3 and Ω0Λ ≈ 0.7.
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5.2 Constraints on Quintessence Models

Having already presented the theoretical background of quintessence models in Chapter 3 we
are ready to study this kind of models numerically.

5.2.1 Numerical Solution of Scalar Field Evolution

Now we are ready to solve the system of Eq.(3.13) and Eq.(3.15) numerically considering a
potential of the form V (φ) = −s φ and using the initial conditions for matter dominated Universe
at early times we solve numerically the following system [92]

φ̈ = −3
ȧ

a
φ̇+ s

ä

a
= −

(
φ̇2 + sφ

)
− Ω0m

2a3

a(ti) =

(
9Ω0m

4

)1/3

ti
2/3

φ(ti) = φi

φ̇(ti) = 0

The value of φi is chosen for each value of the slope s such as that Ω0φ = φ̇2(t0)+V (φ(t0)) = 1−Ω0m

at the present time t0, which is defined by a(t0) = H(t0) = 1. It has to be mentioned that the

quantities ˙φ(t0) and V (φ(t0)) are dimensionless, since we used the rescaling of Eq.(3.14). In what
follows we have assumed a prior of Ω0m = 0.3. According to the numerical solution the field φ
gets negative values (see Fig.5.4) since in order to obtain Ω0φ ≈ 0.7 and H(z = 0) ≈ 1 at the
present time we set the initial value of the φ field in negative values[70]

Figure 5.4: Evolution of the scalar field φ for quintessence models with linear potential for various
slopes.

Assuming s > 0 and φ < 0 our potential (V = −s φ) is positive at early times. At approxi-
mately the present time when the matter density drops and the field potential begins to dominate
the lower friction allows the field to move down the potential. This can be seen in the graphic
below for the potential energy[70]
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Figure 5.5: The potential energy evolution for quintessence models with linear potential for
various slopes.

From the above graphic the following mechanism accrued. As the field moves down the
potential energy becomes negative, φ becomes positive (See Fig.5.4), hence Eq.(3.15) becomes
negative(attractive gravity). Thus the scale factor begins to decelerate until the Universe ends
with a Big Crunch. This can be seen clearly in Fig.5.6[70]

Figure 5.6: Evolution of the scale factor a for quintessence models with linear potential for various
slopes.

This graphic is the same as the one in Ref.[124]
One feature of this evolution that is relevant for observational cosmology is that the equation

of state for the scalar field changes in an unconventional manner. Using the numerical solution
of the system we can evaluate the redshift dependence of the equation of state parameter

w(z) =
p

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

=
1
2
φ̇2 + sφ

1
2
φ̇2 − sφ

(5.42)
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The evolution of the state parameter as a function of the redshift z, is shown in the figure below
in the redshift range 0 ≤ z ≤ 2 for quintessence models for various slopes of s. It is clear from
Fig.5.7, that the PDL is not crossed for any value of s, and instead w(z) evolves towards positive
values for a quintessence scalar field[70]

Figure 5.7: Evolution of the redshift for quintessence models with linear potential for different
slopes.

To summarize, the main features of the evolution of quintessence models are as follows

� The universe is dominated by matter at early times, hence a(t) ∝ t2/3. At the same time
the scalar field is moving slowly due to friction.

� After some time the matter density falls below of the scalar field potential energy and the
evolution becomes scalar field dominated and we have the expansion that we observe today.

� Then the friction becomes smaller and the field starts to move. Therefore the kinetic term
makes w > −1.

� As the field slips down the potential, the potential energy changes sign(V (φ) becomes nega-
tive), since φ changes sign (φ becomes positive), hence ä < 0. This epoch marks the turning
point, where cosmic expansion becomes contraction.

� As the universe starts contracting, the kinetic energy of the scalar field comes to dominate
however this makes the ä even more negative and the universe arrives rapidly at a new
singularity, hereafter denotes as Big Crunch or Cosmic Doomsday.

5.2.2 Fit to SnIa Data

Having solved numerically the rescaled system we are ready to see if the quintessence model
can play the role of dark energy. For this purpose, we will use two recent datasets of distant
Type Ia supernovae (SnIa), such as the Gold Dataset4 and Union2.1 Dataset[125], and obtain the

4The Gold Dataset dataset compiled by Riess et. al.[116] is a set of supernova data from various sources
analysed in a consistent and robust manner with reduced calibration errors arising from systematics. It contains
143 points from previously published data plus 14 points with z > 1 discovered recently with the HST
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“ideal” χ2 function5 and use it to fit the ΛCDM model. If the fit of the quintessence model is
better, then this would be a clear indication that it could play the role of dark energy.

5.2.2.1 χ2 Analysis for Gold Dataset

The Gold dataset[116] provides the apparent magnitude m(z) of the supernovae at peak
brightness after implementing some corrections. The goodness of fit, for the quintessence models
that we studied earlier, corresponding to any slope s is determined by the probability distribution
of s[126]

P (M̄, s) = N e−χ2(M̄,s)/2 (5.43)

where

χ2(M̄, s) =
157∑
i=1

[
mobs(zi)−mth(zi; M̄, s)

]2
σ2
mobs(zi)

(5.44)

This is the quantity that we want to minimize. But as we have already mentioned the data points
of the Gold dataset are given in terms of the distance modulus and in particular Eq.(5.31). Using
Eq.(5.29) and Eq.(5.31) one can see that it is exactly the same instead of minimizing Eq.(5.44),
to minimize the quantity

χ2 (a1, a2, . . . an) =
157∑
i=1

(µobs(zi)− µth(zi))2

σ2
i,total

(5.45)

Eq.(5.45) is exactly the same as the general one from Ref.[126]. The process of minimization that
we follow, is the one in the appendix from Ref.[127] and can be seen below

χ2 (a1, a2, . . . an) =
157∑
i=1

(µobs(zi)− µth(zi))2

σ2
i,total

Eq.(5.31)
=====⇒

⇒ χ2 (a1, a2, . . . an) =
157∑
i=1

(µobs(zi)− 5log10 (DL(z; s))− µ0)2

σ2
i,total

The parameter µ0 is a nuisance parameter but it is constant, i.e. independent of the data points
and the dataset. Now using the very well known identity (a−b−c)2 = a2 +b2 +c2−2ab−2ac+2bc
we derive[127]

χ2 (a1, a2, . . . an) =
157∑
i=1

1

σ2
i,total

(µ2
obs(zi) + (5log10DL)2 + µ2

0 − 2× 5log10DL · µobs(zi)−

−2µobs(zi) · µ0 + 2× 5log10DL · µ0) =
157∑
i=1

µ2
0

σ2
i,total

− 2µ0

157∑
i=1

(µobs(zi)− 5log10DL)

σ2
i,total

+

+
157∑
i=1

µ2
obs(zi) + (5log10DL)2 − 2× 5log10DL · µobs(zi)

σ2
i,total

=

=
157∑
i=1

µ2
0

σ2
i,total

− 2µ0

157∑
i=1

(µobs(zi)− 5log10DL)

σ2
i,total

+
157∑
i=1

µ2
obs(zi)− µ2

th(zi; a1, . . . an, µ0 = 0)− 2µobs(zi) · µth(zi)
σ2
i,total

⇒ χ2 (a1, a2, . . . an) = A(a1, . . . an)− 2µ0B(a1, . . . an) + µ2
0C(a1, . . . an) (5.46)

5For an introduction to statistical physics and the χ2 function see Chapter 15 from Ref.[126]
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where[127]

A(a1, . . . an) =
157∑
i=1

(µobs(zi)− µth(zi;µ0 = 0, a1, . . . an))2

σ2
i,total

B(a1, . . . an) =
157∑
i=1

µobs(zi)− µth(zi;µ0 = 0, a1, . . . an)

σ2
i,total

C(a1, . . . an) =
157∑
i=1

1

σ2
i,total

(5.47)

Now we are ready to compute the minimum of Eq.(5.46) with respect to µ0 as follows

dχ2(a1, . . . , an)

dµ0

= 0⇒ −2B + 2µ0C = 0⇒ χ2(a1, . . . , an) has a minimum for µ0 =
B

C
(5.48)

and the minimum of Eq.(5.48) is at

χ2(a1, . . . , an) = A− 2B2

C
+
B2

C�2
·��C ⇒ χ2(a1, . . . , an) = A(a1, . . . an)− B(a1, . . . an)2

C(a1, . . . an)
(5.49)

Thus we can minimize Eq.(5.49) instead of Eq.(5.46) which is independent of µ0.
Alternatively we could have performed a uniform marginalization over the nuisance parameter

µ0 thus obtaining

χ2(a1, . . . , an) = A(a1, . . . an)− B(a1, . . . an)2

C(a1, . . . an)
+ ln

(
C(a1, . . . an)

2π

)
(5.50)

to be minimized with respect to a1, . . . , an. This is the particular quantity that we will minimize in
our numerical analysis. The Eq.(5.50) for the ΛCDM model and quintessence model for various
slopes of s can be seen in the matrix constructed for the Gold dataset6 below[70]

Models for Study for Gold Dataset
Type s χ2

si

ΛCDM 0 183.275
QMs=0.1 0.1 183.332
QMs=0.2 0.2 183.346
QMs=0.5 0.5 183.497
QMs=1.0 1.0 184.355
QMs=1.5 1.5 186.593
QMs=2.0 2.0 191.163
QMs=2.5 2.5 198.511
QMs=3.0 3.0 208.969

The 1σ error of s (1 parameter) is determined by the relation[115, 126]

∆χ2
1σ = χ2(s1σ)− χ2

min = 1 (5.51)

i.e. s in the range [s0; s1σ] with 68% probability. Similarly the 2σ error (95.4% range) is determined
by ∆χ2

2σ = 4 and the 3σ error (99% range) by ∆χ2
3σ = 6.63. These differences concern 1 parameter.

For more parameters we construct the following table

6The Gold dataset points can be found in a txt form in [70]
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Number of Parameters 1σ error 2σ error 3σ error
1 1 4 6.63
2 2.3 6.17 9.21
3 3.53 8.02 11.34

The following Fig.5.8 shows the plot of the differences ∆χ2(s) = χ2(s)−χ2(s ' 0) with respect
to the cosmological constant for quintessence models[70]

Figure 5.8: The differences ∆χ2(s) = χ2(s) − χ2(s ' 0) for quintessence models with various
values of s = {0, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

As it can be seen for the matrix above and Fig.5.8 the best model fit is the ΛCDM model.

5.2.2.2 χ2 Analysis for Union2.1 Dataset

Next we will follow the same procedure for another Dataset, the Union2.1[125], which is a
complication of 580 data. Working as in Subsubsection 5.2.2.1, we can find the goodness of fit to
the corresponding observed Hubble free luminosity distance coming from the SnIa of the Union2.1
Dataset7. Hence we construct the corresponding matrix[70]

Models for Study for Union2.1 Dataset
Type s χ2

si

ΛCDM 0 570.264
QMs=0.1 0.1 571.603
QMs=0.2 0.2 571.742
QMs=0.5 0.5 572.476
QMs=1.0 1.0 576.598
QMs=1.5 1.5 586.317
QMs=2.0 2.0 605.752
QMs=2.5 2.5 636.348
QMs=3.0 3.0 679.423

and the same figure as Fig.5.8 as it can be seen below[70]

7The Union2.1 dataset points can be found here

http://supernova.lbl.gov/Union/
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Figure 5.9: The differences ∆χ2(s) = χ2(s) − χ2(s ' 0) for quintessence models with various
values of s = {0, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

From the above graphic, we conclude that the best fit provided for quintessence models is
obtained for s ' 0. For s = 0 one can see that ∆χ2 is smaller than any ∆χ2 which corresponds
to any value of s. That is due to the fact that the Union2.1 Dataset has 580 data, which makes
our model more sensitive and gives larger initial value for χ2. It is important to remember that
in the aforementioned matrices the value of s that corresponds to the ΛCDM is not exactly zero.
The quintessence model for small value of s (very close to zero) leads to a very small kinetic term
of the field, mimicking the ΛCDM model.

From the above analysis we conclude that regardless of the dataset that we use the ΛCDM
is the best fit and quintessence field theory models have serious difficulty to exceed the quality of
fit for the particular potential of a cosmological constant despite of the additional parameters.

5.3 Fits to equation of state parametrizations

5.3.1 Linear Ansanz(L.A.)

We are thus faced with the following question “What are the particular features required by
w(z) for better fits to the SnIa data?”. To address this question we can use arbitrary parametriza-
tions of w(z) and identify the forms of w(z) that best fit the data. The best fit forms of w(z)
have the following common properties

� The value of w(z = 0) at best fit was found to be in the range −2 < w(z = 0) < −1

� The function w(z) at best fit was found to cross the PDL from below at least once with
dw
dz
> in the range 0 < z < 1.

As a possible solution, in order to find a better fit to data, one could consider two other dynam-
ical parametrizations of dark energy which are commonly used in the literature considering the
equation of state w(z). The main advantage of such parametrizations is that we could introduce
parameters and minimize the χ2 below the χ2 of ΛCDM model.
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First let us consider a linear ansanz[115]

w(z) = w0 + w1z (5.52)

Let us be a little more explicit expressing the equation of state parameter in terms of H(z), dH
dz

and Ω0m using the definitions of Friedmann equation and of the deceleration parameter as follows

H2 =

(
ȧ

a

)2

=
8πG

3
(ρm + ρDE)⇒ 3H2

8πG
= ρm + ρDE and (5.53)

q = − ä

aH2
=

4πG

3H2
[ρm + (ρDE + 3pDE)]⇒ 4πG

3H2
· 3H2

8πG
+ 3pDE ·

4πG

3H2
⇒

⇒ q =
1

2
+ pDE

4πG

H2
⇒ pDE =

H2

4πG

(
q − 1

2

)
(5.54)

Using Eq.(5.53) and Eq.(5.54) one can see

w(z) =
pDE
ρDE

=
H2

4πG

(
q − 1

2

)
3H2

8πG
− ρm

=
H2

4πG

(
q − 1

2

)
3H2

8πG

(
1− 8πG

3H2ρm
) =

2
(
q − 1

2

)
3 (1− Ωm)

=
2q − 1

3 (1− Ωm)
(5.55)

where Ωm = ρm
8πG
3H2 = Ω0m(1 + z)3 H0

2

H2 . Using now the definitions of q and H it is easy to show
that

q = −1 + (1 + z)
dlnH

dz
(5.56)

Substituting Eq.(5.56) in Eq.(5.55) we obtain

w(z) =
2q − 1

3(1− Ωm)
=

2
(
−1 + (1 + z)dlnH

dz

)
− 1

3(1− Ωm)
=
−2− 1 + 2(1 + z)dlnH

dz

3(1− Ωm)
=
−3 + 2(1 + z)dlnH

dz

3(1− Ωm)
⇒

⇒ w(z) =
2
3
(1 + z)dlnH

dz
− 1

1− Ωm

⇒ w(z) =
2
3
(1 + z)dlnH

dz
− 1

1− Ω0m(1 + z)3 H0
2

H2

(5.57)

Using now Eq.(5.57) we can obtain the Hubble parameter H(z), with the assistance of Mathe-
matica, corresponding to the w(z) of Eq(5.52) as

H2(z) = H0
2
[
Ω0m(1 + z)3 + (1− Ω0m) (1 + z)3(1+w0−w1)e3w1z

]
(5.58)

Eq.(5.58) can now be used to obtain the Dth
L (z;w0, w1) from Eq.(5.23) and minimize the χ2

obtained from the Gold dataset. Using the Gold dataset, the best fit parameter values for this
ansanz are (w0, w1) = (−1.40± 0.40, 1.66± 1.42) giving χ2 = 180.568 at the minimum. However
the difference lies in the 1σ error level as it can be seen in the following figure[70]
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Figure 5.10: The 1σ and 2σ confidence contours level of Linear Ansanz. A prior Ω0m = 0.309 has
been used

5.3.2 CPL Ansanz

Next we consider the Chevallier-Polarski-Linder (CPL) ansanz[128, 129] which is based on a
linear expansion with respect to the scale factor around its present value a(t0) = 1 and is of the
form

w(z) = w0 + w1
z

1 + z
(5.59)

where z is the redshift corresponding to the scale factor. The ansanz varies between w0 at z = 0
and w0 + w1 at z → ∞ with crossover at z = 1 where the two values contribute equally. The
existence of such a crossover has the advantage that observations near it apply to a reduced
parameter phase space, hence the remaining parameter estimates are more sensitive. The Hubble
parameter corresponding to this ansanz is

H2(z) = H0
2
[
Ω0m(1 + z)3 + (1− Ω0m) (1 + z)3(1+w0+w1)e3w1( 1

z+1
−1)
]

(5.60)

The best fit parameter values for this ansanz are (w0, w1) = (−1.57± 0.51, 3.25± 2.74) giving
χ2 = 180.132 at the minimum. The errors are also for this particular parametrization at the 1σ
error level as it can be seen in the following contour plots[70]
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Figure 5.11: The 1σ and 2σ confidence contours level of CPL Ansanz. A prior Ω0m = 0.309 has
been used

These parametrizations were chosen for their simplicity and for leading to fairly good fits
to the data relatively to other parametrizations. Both of these ansanzs they share both of the
properties referred above as it can be seen in Fig.5.12[70]

Figure 5.12: The evolution of w for the field theory models studied here superposed with two
better fits obtained by arbitrary parametrization: L.A.(Red Line) and CPL Ansanz(Blue Line)

From the above analysis we see that the field theory models which do not cross the PDL
have positive ∆χ2 and therefore they provide worse fits than ΛCDM . In particular for the linear
ansanz Eq.(5.52) we find ∆χ2 = −2.70734 while for the smoother ansanz CPL of Eq.(5.59) we
find ∆χ2 = −3.14334. These differences mean that the point (w0, w1) = (−1, 0) corresponding
to the cosmological constant from the viewpoint of these parametrizations, lies in the 1σ region
from the best fits obtained from these parametrizations. The ideal would be if the difference
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∆χ2 ≥ 6.17 = ∆χ2
2σ i.e. the point (w0, w1) = (−1, 0) corresponding to the cosmological constant

from the viewpoint of these parametrizations, to lie in the 2σ region from the best fits obtained
from these parametrizations.

Model selection is the problem of distinguishing competing models, perhaps featuring different
numbers of parameters. One could naively consider a model with many parameters which could
give the desirable result, i.e. ∆χ2 ≥ 6.17 = ∆χ2

2σ. The value of ∆χ2
2σ which corresponds to the

2σ region was calculated via[130]

P =
1

2Γ (n, 2)

∫ ∆χ2
2L

2

0

(x
2

)n
2
−1

e−
x
2 dx = 1−

Γ
(
n
2
,

∆χ2
2L

2

)
Γ
(
n
2

) (5.61)

where n are the number of parameters of our model, Γ(a) is the very well known Euler gamma
function and Γ(a, z) is the incomplete gamma function. For these parametrizations we set in
Eq.(5.61) n = 2 and in order to obtain P = 68%, i.e the 1σ error we set ∆χ2

1L = 2.3. Similarly
for the 2σ error the difference ∆χ2

2L = 6.17.
There are many other parametrizations that have produced more desirable results[115]. Hence

one should face the following question “How can we be sure that our model is correct?”. It seems
like a trick that we can induce some extra parameters and suddenly obtain the “correct” model.
Fortunately the statistics literature contains two distinct sets of tools based on information theory
such as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)8.
These are measures of the relative quality of statistical models (parametrizations) for a given set
of data which penalize models for the number of their parameters.

5.4 Information Criteria

In general, a model is a choice of parameters to be varied and a prior probability distribution on
those parameters. The goal of model selection is to balance the quality of fit to observational data
against the complexity, or predictiveness, of the model achieving that fit. This tension is achieved
through model selection statistics, which attach a number to each model enabling a rank-ordered
list to be drawn up. Typically, the best model is adopted and used for further inference such as
permitted parameter ranges, though the statistics literature has also seen increasing interest in
multi-model inference combining a number of adequate models.

Model selection is the problem of distinguishing competing models, perhaps featuring different
numbers of parameters. One could naively consider a model with many parameters which could
give the desirable result, i.e. ∆χ2 ≥ ∆χ2

2σ. There are many other parametrizations that have
produced more desirable results[94]. Hence one should face the following question “How can
we be sure that our model is correct?”. It seems like a trick that we can induce some extra
parameters and suddenly obtain the “correct” model. Fortunately the statistics literature contains
two distinct sets of tools those based on information theory such as like the Akaike Information
Criterion (AIC)[131] and the Bayesian Information Criterion (BIC)[132]. These are measures of
the relative quality of statistical models (parametrizations) for a given set of data which penalize
models for the number of their parameters. Let us study these models separately

5.4.1 Akaike Information Criterion (AIC)

In order to understand the Akaike Information Criterion[131] we have to remember the “Kull-
back–Leibler Information(K-L)” because Akaike used this particular model in order to obtain his

8See Appendix C
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criterion. Let us then begin without any issues of parameter estimation and deal with very simple
expressions for the models f and g, assuming that they are completely known. Initially we will
let both f and g be simple probability distributions, since this will allow an understanding of K-L
information or distance between two models in a simple setting. However, we will soon switch to
the concept that f is a notation for full reality or truth. We use g to denote an approximating
model in terms of a probability distribution [133]

Kullback–Leibler Information

Kullback-Leibler information between models f and g is defined for continuous functions
as the (usually multi-dimensional) integral

I(f, g) =

∫
f(x)log

(
f(x)

g(x|θ)

)
dx

where log denotes the natural logarithm. The notation I(f, g) denotes the “information
lost when g is used to approximate f”. As a heuristic interpretation, I(f, g) is the distance
from g to f .

We will use both interpretations throughout this section, since both seem useful. Of course,
we seek an approximating model that loses as little information as possible. This is equivalent to
minimizing I(f, g), over g. Full reality f is considered to be given (fixed), and only g varies over
a space of models indexed by θ. Similarly, Cover and Thomas[134] note that the K-L distance is
a measure of the inefficiency of assuming that the distribution is g when the true distribution is
f[133]

Kullback–Leibler Information(KL information)

The expression for the Kullback-Leibler information or distance in the case of discrete
distributions such as the Poisson, binomial, or multinomial is

I(f, g) =
k∑
i=1

pilog

(
pi
πi

)
Here, there are k possible outcomes of the underlying random variable; the true probability
of the ith outcome is given by pi, while the π1, . . . , πk constitute the approximating proba-
bility distribution (i.e., the approximating model). As in the continuous care the notation
I(f, g) denotes the information lost when g is used to approximate f or the distance from
g to f .

In the following material we will generally think of K-L information in the continuous case
and use the notation f and g for simplicity. The material above makes it obvious that both f
and g (and their parameters) must be known to compute the K-L distance between these two
models. However, if only relative distance is used, this requirement is diminished, since I(f, g)
can be written equivalently as

I(f, g) =

∫
f(x) log(f(x))−

∫
f(x) log(g(x|θ)) (5.62)

Note that each of the two terms on the right of the above expression is a statistical expectation
with respect to f (truth). Thus, the K-L distance (above) can be expressed as a difference between
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two statistical expectations

I(f, g) = Ef [log(f(x))]− Ef [log(g(x|θ))] (5.63)

each with respect to the distribution f . This last expression provides easy insights into the
derivation of AIC.

The first expectation Ef [log(f(x))] is a constant that depends only on the unknown true
distribution, and it is clearly not known (i.e., we do not know f in actual data analysis). Therefore,
treating this unknown term as a constant, a measure of relative directed distance is possible.
Clearly, if one computed the second expectation Ef [log(g(x|θ))] one could estimate I(f, g) up to
a constant C, namely Ef [log(f(x))].

I(f, g) = C − Ef [log(g(x|θ))]⇒ I(f, g)− C = −Ef [log(g(x|θ))]

The term I(f, g) − C is a relative directed distance between f and g. Thus, Ef [log(g(x|θ))]
becomes the quantity of interest for selecting a best model.

Akaike’s [131] seminal paper proposed the use of the Kullback-Leibler information or distance
as a fundamental basis for model selection. However, K-L distance cannot be computed without
full knowledge of both f (full reality) and the parameters (θ) in each of the candidate models
gi(x|θ). Akaike found a rigorous way to estimate K-L information, based on the empirical log-
likelihood function at its maximum point.

In data analysis the model parameters must be estimated, and there is usually substantial
uncertainty in this estimation. Models based on estimated parameters, hence on θ̂ not θ, represent
a major distinction from the case where model parameters would be known. This distinction
affects how we must use K-L distance as a basis for model selection. Akalke showed that the
critical issue for getting an applied K-L model selection criterion was to estimate[133]

EyEx

[
log
(
g(x|θ̂(y))

)]
where x and y are independent random samples from the same distribution and both statistical
expectations are taken with respect to truth f . This double expectation, both with respect to
truth f , is the target of all model selection approaches, based on K-L information.

It is tempting to just estimate EyEx

[
log
(
g(x|θ̂(y))

)]
by the maximized Log (L(θ)|data) for

each model gi . However, Akalke showed, in 1973[131], that the maximized log-likelihood is biased
upward as an estimator of the model selection target. He also found that under certain conditions
(these conditions are important, but quite technical) this bias is approximately equal to K, the
number of estimable parameters in the approximating model. This is an asymptotic result of
fundamental importance.

Thus, an approximately unbiased estimator of EyEx

[
log
(
g(x|θ̂(y))

)]
for large samples and

“good” models is Log (L(θ)|data) − K. Akaike’s finding of a relation between the relative ex-
pected K-L distance and the maximized log-likelihood has allowed major practical and theoretical
advances in model selection and the analysis of complex data sets. The final form of the Akaike In-
formation Criterion was obtained in its final form when in 1973 he multiplied Log (L(θ)|data)−K
by −2 (“taking historical reasons into account”) to obtain the final formula

AIC = −2Log (L(θ)|data) + 2K (5.64)

where the expression −2Log (L(θ)|data) = χ2 9, i.e the numerical value of the log-likelihood at
its maximum point and k is the number of parameters of the model. This has become known as
Akaike’s information criterion or AIC.

9This particular equation holds true for gaussian distributed variables only.
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Let us see how our parametrizations are penalised by the AIC. We will calculate the AIC for
the ΛCDM , the Linear Ansanz and the CPL Ansanz. Of course the best model is the one which
minimizes the AIC

AICΛCDM = 2k + χ2 = 2 · 1 + 183.275 = 185.275

AICLinear = 2k + χ2 = 2 · 2 + 180.568 = 184.568

AICCPL = 2k + χ2 = 2 · 2 + 180.132 = 184.132

∆AICLinear = −0.707

∆AICCPL = −1.143

Thus we can see that the general parametrizations give a better result considering the AIC. Let
us now see and the Bayesian Information Criterion.

5.4.2 Bayesian Information Criterion (BIC)

Another fundamental criterion in statistical mechanics is the Bayesian Information Criterion
(BIC). The BIC was introduced by Schwarz in 1978[132] and is defined as

BIC = −2Log (L(θ)|data) + klnN (5.65)

where N is the number of data-points used in the fit. BIC arises from a Bayesian viewpoint with
equal prior probability on each model and very vague priors on the parameters, given the model.
The assumed purpose of the BIC-selected model was often simple prediction. The BIC assumes
that the data-points are independent and identically distributed, which may or may not be valid
depending on the dataset under consideration (e.g. it is unlikely to be good for cosmic microwave
anisotropy data, but may well be for supernova luminosity-distance data).

Using the process above one can calculate

BICΛCDM = χ2 + klnN = 183.275 + 1 · ln157 = 183.275 + 1 · 5.06 = 188.331

BICLinear = χ2 + klnN = 180.568 + 5.06 = 185.624

BICCPL = χ2 + klnN = 180.132 + 5.06 = 185.302

∆BICLinear = −2.707

∆BICCPL = −3.029

As we can see from the above calculations considering the BIC, the general ansanzs give
better fit and the two criteria agree in that. Unfortunately the fact that the difference of ∆x2

corresponding to the cosmological constant is not in the 2σ regions tells us that these particular
parametrizations are not significantly better than the ΛCDM model.

5.5 Constraints on Scalar Tensor Quintessence Models

It should be pointed out that in the context of the Union2.1 and Gold datasets, parametriza-
tions that allow for crossing of the PDL do not seem to have a significant advantage from the
ΛCDM model since the χ2 lies inside the 2σ confidence level. This indicates that either we must
wait until further SnIa datasets are released or we should look for an alternative theory which
describes the dark energy, i.e a model of the second class of models that we mentioned before. A
representative model of this particular category is provided by scalar-tensor theories of gravity,
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which theoretical equations were studied in detail in Chapter 4. These particular models have
the additional advantage of providing a potential solution to the origin problem as the physical
origin of the scalar field is the dynamical “Newton’s constant” F (φ), which is minimally coupled
to to the curvature scalar R.

5.5.1 Evolution of the φ Field and the Scale Factor

In this subsection we will study the cosmological dynamics of scalar tensor cosmological mod-
els. In order to do that, we will use the dynamical equation for the scale factor that we have
already derived, i.e. Eq.(4.31) as well as Eq.(4.16). These equations along with the initial condi-
tions represent a coupled system which can be solved numerically.

Subsequently we assume initial conditions deep in the matter era (t � t0) when the scalar
field is assumed frozen at φ(ti) = φi(φ̇(ti) = 0). At that time we can ignore the φ−terms of
Eq.(4.31). Thus all the φ−terms tend to zero, i.e.

φ̇2

3F
→ 0,

V̄ (φ)

3F
→ 0, H̄

Ḟ (φ)

2F (φ)
→ 0,

F̈

2F (φ)
→ 0

Hence Eq.(4.31) can be written as
ä

a
= −Ω0mF0

2a3Fi
(5.66)

In the case of a matter dominated flat universe with dark energy, i.e. our case, in an FRW
spacetime the first (order) Friedmann equation can be written as(

ȧ

a

)2

=
Ω0mF0

2

Fi
2a3

⇒ ȧ

a
=

√
Ω0mF0

a3/2Fi
⇒ da

dt

√
a =

√
Ω0m

F0

Fi
⇒ da

√
a =

√
Ω0m

F0

Fi
dt

∫
=⇒

∫
=⇒ 2

3
a3/2 =

√
Ω0m

F0

Fi
t⇒ a3/2 =

3F0

2Fi

√
Ω0mt⇒ a(ti) =

(
3F0

2Fi

√
Ω0mt

)2/3

⇒ a(ti) =

(
9F0

4Fi
Ω0m

)1/3

t2/3

(5.67)

Taking the derivative of Eq.(5.67) it is straightforward to see

ȧ(ti) =
2

3

(
9F0

4Fi
Ω0m

)1/3

t−1/3 (5.68)

Of course when F = 1 Eq.(5.67) and Eq.(5.68) reduce to the usual ones in General Relativity as
expected.

In order to solve the system of Eq.(4.31) and Eq.(4.16) with the above initial conditions
we tune self-consistently the values of φi and F0 ≡ F (φ (t0)) = 1 − λφ0 so that the following
consistency conditions are simultaneously satisfied at the present time

a(t0) = 1

H(t0) = 1

Ω0φ = 0.7

F (φ(t0)) ≡ 1− λφ(t0) = F0

In practice we define t0 as the present time, i.e the time that a = 1 and then tune φi and F0 in
Eq.(4.31) and in the initial conditions (5.67) and (5.68), so that the aforementioned consistency
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conditions are simultaneously satisfied at the present time in the numerical solution. Therefore
the coupled system that we solve numerically is the following

ä

a
= −Ω0mF0

2Fa3
− φ̇2

3F
+

V̄

3F
− F̈

2F
− H̄ Ḟ

2F
(5.69)

φ̈+ 3
ȧ

a
φ̇− 3

(
ä

a
+
ȧ2

a2

)
Fφ + Vφ = 0 (5.70)

φ̇(ti) = 0 (5.71)

a(ti) =

(
9F0

4Fi
Ω0m

)1/3

t2/3 (5.72)

ȧ(ti) =
2

3

(
9F0

4Fi
Ω0m

)1/3

t−1/3 (5.73)

During this work a generic form of the potential V (φ) = −s φ and the linear nonminimal
coupling F (φ) = 1−λφ is considered. This form, corresponds to a small value of vacuum energy
expressed through the potential field V (φ) and also small deviations from GR expressed through
the nonminimal coupling F (φ) = 1. Solving the system numerically, one can obtain the following
figure for the scale factor[70]

Figure 5.13: The collapse of the scale factor, in a logarithmic scale, for representative quintessence
with linear potential, s = 1 and various values of slopes λ.

As we can see clearly from Fig.5.13 initially the universe expands with a late time acceleration
but soon after the field potential develops to negative values, the scalar field gravitational inter-
action becomes strongly attractive and the scale factor collapses to a singularity. The curves stop
when F (φ) → 0, i.e Eq.(5.69) is undefined. However, for values of λ larger than a critical value
λcrit., the nonminimal coupling becomes important and the dynamics of the scalar field change
at late times. Instead of rolling down the potential towards larger field values, it starts rolling up
its potential towards smaller (negative) field values as dictated by its non-minimal coupling to
the metric (lower curves in Fig.5.14), hence shifting away from the Big Crunch Doomsday. This
is shown in Fig.5.14 where we present the time evolution of the scalar field for values of λ below
and above the critical value which for s = 1 is approximately λcrit. ' 0.24[70]
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Figure 5.14: The evolution of the scalar field for s = 1 and various values of λ, above and below
the critical values λcrit. ' 0.24. The solid lines correspond to initial conditions φ̇i = 0 while the
dashed ones correspond to φ̇i = 15

As we can see from Fig.5.14 the behaviour of the φ field is independent from the initial value
that we use when we demand the consistency conditions to be satisfied, i.e obtaining a Universe
with H(z = 0) = 1 and Ω0φ = 0.7. Thus, it is possible to avoid Cosmic Doomsday[69, 124, 135,
136] with a carefully chosen set of (s, λ), which is a unique feature for models of this nature.

5.5.2 Equation of State

Next we will try some manipulations in order to derive the equation of state parameter wDE.
First we rewrite Eq.(4.29) and Eq.(4.30) in a more convenient form as follows

3F (φ)H̄2 = ρ̄m +
φ̇2

2
+ V̄ (φ)− 3H̄Ḟ ⇒ 3F (φ)H̄2 =

ρm

H0
2 +

φ̇2

2
+ V̄ (φ)− 3H̄Ḟ ⇒

⇒ 3F (φ)H̄2 + 3F0H̄
2 =

ρm

H0
2 +

φ̇2

2
+ V̄ (φ)− 3H̄Ḟ + 3F0H̄

2 ⇒

3F0H̄
2 =

ρm

H0
2 +

φ̇2

2
+ V̄ (φ)− 3H̄Ḟ − 3(F − F0)H̄2 (5.74)

However in our model the Universe consists of matter and dark energy, thus ρtotal = ρm + ρDE.
As a result, Eq.(5.74) can be written as

3F0H̄
2 = ρ̄m + ρ̄DE ⇒ ρ̄DE =

φ̇2

2
+ V̄ (φ)− 3H̄Ḟ − 3(F − F0)H̄2 (5.75)

Similarly one can see that

−2F (φ)

(
ä

a
− ȧ2

a2

)
= ρ̄m + φ̇2 + F̈ − H̄Ḟ ⇒ −2F (φ)

ä

a
+ 2F (φ)

ȧ2

a2
= ρ̄m + φ̇2 + F̈ − H̄Ḟ ⇒

⇒ −2F (φ)
(

˙̄H + H̄2
)

+ 2F (φ)H̄2 = ρ̄m + φ̇2 + F̈ − H̄Ḟ ⇒

⇒ −2F (φ) ˙̄H −����
�

2F (φ)H̄2 +���
��2F (φ)H̄2 = ρ̄m + φ̇2 + F̈ − H̄Ḟ ⇒ −2F (φ) ˙̄H = ρ̄m + φ̇2 + F̈ − H̄Ḟ ⇒
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⇒ −2F (φ) ˙̄H − 2F0
˙̄H = ρ̄m + φ̇2 + F̈ − H̄Ḟ − 2F0

˙̄H ⇒

⇒ −2F0
˙̄H = ρ̄m + φ̇2 + F̈ − H̄Ḟ + 2(F − F0) ˙̄H + ρ̄DE − ρ̄DE (5.76)

But −2F0
˙̄H = ρ̄m + ρ̄DE + p̄DE, hence

p̄DE = φ̇2 + F̈ − H̄Ḟ + 2(F − F0) ˙̄H − φ̇2

2
− V̄ (φ) + 3H̄Ḟ + 3(F − F0)H̄2 ⇒

⇒ p̄DE =
φ̇2

2
+ F̈ − V̄ (φ) + 2H̄Ḟ + (F − F0)

(
2 ˙̄H + 3H̄2

)
(5.77)

Now we are ready to obtain the equation of state parameter wDE, as follows[69]

wDE =
p̄DE
ρ̄DE

=

1
2
φ̇2 − V̄ + F̈ + 2H̄Ḟ −

(
2 ˙̄H + 3H̄2

)
(F0 − F )

1
2
φ̇2 + V̄ − 3H̄2 (F − F0)− 3H̄Ḟ

=

[
φ̇2 − 1

2
φ2
]

+ F̈ +
[
3H̄Ḟ − H̄Ḟ

]
− V̄ − 3H̄2 (F0 − F )− 2 ˙̄H (F0 − F )

1
2
φ̇2 + V̄ − 3H̄2 (F − F0)− 3H̄Ḟ

⇒

⇒ wDE = −1 +
φ̇2 + F̈ − H̄Ḟ − 2 ˙̄H(F0 − F )

1
2
φ̇2 + V̄ − 3H̄2(F − F0)− 3H̄Ḟ

(5.78)

Let us now return to the usual energy conservation equation, in order to connect the wDE
with the observable Hubble parameter, for a pressureless fluid an integrate that equation

dρm
dt

+3Hρm = 0⇒ dρm
ρm

= −3Hdt
∫
=⇒ ρm = ρ0m

(
a0

a(t)

)3
a0=1
==⇒ ρm = ρ0m

1

a3
= ρ0m(1+z)3 (5.79)

Using Eq.(4.27), Eq.(5.79) can be written as

ρm =
ρ0m

3F0H0
2 3(1 + z)3H0

2F0 = 3Ω0mH0
2(1 + z)3F0

Consequently, the ρ̄DE is defined via the following equation

3F0H̄
2 = ρ̄m+ρ̄DE = ρ̄DE+

ρm

H0
2 = ρ̄DE+3Ω0m(1+z)3F0 ⇒ ρ̄DE = 3F0H̄

2−3Ω0m(1+z)3F0 (5.80)

Similarly for the pressure p̄DE

− 2F0
˙̄H = ρ̄m + ρ̄DE + p̄DE ⇒ p̄DE = −2F0

˙̄H − 3F0H̄
2 (5.81)

Now we are ready to compute wDE rewriting the dark energy state parameter using Eq.(5.80)
and Eq.(5.81) as follows

wDE =
p̄DE
ρ̄DE

=
−2F0

˙̄H − 3F0H̄
2

3F0H̄2 − 3Ω0m(1 + z)3F0

=
−2 ˙̄H − 3H̄2

3H̄2 − 3Ω0m(1 + z)3
(5.82)

Eq.(5.82) is quite similar to Eq.(3.14) from Ref.[69]. All we need to do is to rewrite the term

−2 ˙̄H as follows

˙̄H =
dH̄

dt
=
dH̄

dz

dz

dt

H̄ =
ȧ

a
= (z + 1)

d

dt

(
1

z + 1

)
= −dz/dt

z + 1
⇒ dz

dt
= −H̄(z + 1) hence ˙̄H = −dH̄

dz
H̄(z + 1)
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Also one can easily see that

dH̄2(z)

dz
= 2H̄(z)

dH̄

dz
⇒ dH̄

dz
=
dH̄2(z)

dz

1

2H̄(z)

Hence

2 ˙̄H = −A2
dH̄2(z)

dz

1

A2��
�H̄(z)�
��H̄(z)(z + 1) = −dH̄

2(z)

dz
(z + 1) (5.83)

Comparing Eq.(5.83) and (5.82) the equation of state parameter is given by[69]

wDE =
3H̄2(z)− (1 + z)dH̄

2(z)
dz

3H̄2(z)− 3Ω0m(1 + z)3
(5.84)

Let us now numerically10 study equation Eq.(5.78) by solving the aforementioned dynamical
system. At early times, for λ < λcrit., the wDE reaches the value −1, when the potential energy
dominates over the kinetic energy. However, when the potential becomes negative, the wDE
departs towards positive values, leading to infinite attractive gravity and a Big Crunch singularity
at a finite future time. In contrast, if λ > λcrit. the wDE remains stable in the value −1. This can
be seen in the Fig.5.15 below[70]

Figure 5.15: The evolution of the equation of state parameter for s = 1 and values of λ above
and below the critical values λcrit(s=1) = 0.24

We have repeated the above analysis for various values of s of the potential in order to obtain
the λcrit as a function of s. For small values of the slope s, the dynamics leading to a singularity
can be reversed by increasing the value of the coupling parameter λ. The required value of λ
for reversal of the doomsday dynamics, i.e. λcrit., increases almost linearly with s as shown in
Fig.5.16[70]

10See Appendix C



5.5. Constraints on Scalar Tensor Quintessence Models 67

Figure 5.16: The critical value of λ for various values of the slope s of the linear potential. The
dependence of λcrit. on s is approximately linear

Consequently the relation for the linear fit is λcrit. ' 0.064 + 0.185s. The fact that λ and
s are linearly related is very striking. A possible explanation for the linearity is that by fixing
the φi in order to obtain our Universe we give specific energy in the φ field. Unfortunately an
analytical derivation of the numerically derived values of λcrit. was impossible to be calculated
and it is postponed for future analysis.

5.5.3 Rayleigh Equation

In order to understand our previous results, i.e the existence of the critical points of the λ
parameter, we are obligated to study the system analytically. A possible approach could be
obtained by deriving an effective evolution equation for the scalar field φ. For the derivation
we will use the Equations of Motion starting from Eq.(4.16) which can be written in a more
convenient form as follows

φ̈+ 3
ȧ

a
φ̇− 3

(
ä

a
+
ȧ2

a2

)
Fφ + Vφ = 0⇒ φ̈+ 3

ȧ

a
φ̇− 3Fφ

(
Ḣ +H2 +H2

)
+ Vφ = 0⇒

φ̈+ 3
ȧ

a
φ̇− 3Fφ

(
Ḣ + 2H2

)
+ Vφ = 0⇒ φ̈+ 3

ȧ

a
φ̇− 3FφḢ − 6FφH

2 + Vφ = 0 (5.85)

Also one should rewrite Eq.(4.11) and Eq.(4.14) as

3F (φ)H2 = ρm +
φ̇2

2
+ V (φ)− 3HḞ

× 2
F (φ)

===⇒ 6H2 =
2ρm
F

+
φ̇2

F
+

2V

F
− 6H

Ḟ

F
(5.86)

−2F (Ḣ +H2 −H2) = ρm + φ̇2 + F̈ −HḞ
× 3

2F (φ)
====⇒ −3Ḣ =

3ρm
2F

+
3φ̇2

2F
+

3F̈

2F
− 3HḞ

2F
(5.87)

Therefore Eq.(5.85), using Eq.(5.86) and Eq.(5.87), can be written as

φ̈+ 3
ȧ

a
φ̇+ Fφ

(
3ρm
2F

+
3φ̇2

2F
+

3F̈

2F
− 3HḞ

2F

)
− Fφ

(
2ρm
F

+
φ̇2

F
+

2V

F
− 6H

Ḟ

F

)
+ Vφ = 0⇒

⇒ φ̈+ 3
ȧ

a
φ̇+ Fφ

(
3ρm
2F
− 4ρm

2F
+

3φ̇2

2F
− 2φ̇2

2F
− 3HḞ

2F
+

12HḞ

2F
+

3F̈

2F
− 2V

F

)
+ Vφ = 0⇒
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⇒ φ̈+ 3
ȧ

a
φ̇+ Fφ

(
−ρm

2F
+
φ̇2

2F
+

9HḞ

2F
+

3F̈

2F
− 2V

F

)
+ Vφ = 0 (5.88)

Let us now assume that F (φ) = 1 − λ · φ and V = −sφ, as in the previous sections. Under
this assumption, Eq.(5.88) can be written as

φ̈+ 3
ȧ

a
φ̇− λ ·

(
−ρm

2F
+
φ̇2

2F
+

9H(−λφ̇)

2F
+

3(−λφ̈)

2F
− 2(−sφ)

F

)
− s = 0⇒

⇒ φ̈+ 3Hφ̇+
λρm
2F
− λφ̇2

2F
+

9Hλ2φ̇

2F
+

3λ2φ̈

2F
− 2λ · sφ

F
− s = 0⇒

φ̈

(
1 +

3λ2

2F

)
+ 3Hφ̇

(
1 +

3λ2

2F

)
− λ

2F
φ̇2 = s+

2λ

F
sφ− λ

2F
ρm (5.89)

In order to be accurate we have to use the rescaled quantities, i.e. Eq.(5.89) should be written as
(H → H̄, ρm → ρ̄m)

φ̈

(
1 +

3λ2

2F

)
+ 3H̄φ̇

(
1 +

3λ2

2F

)
− λ

2F
φ̇2 = s+

2λ

F
sφ− λ

2F
ρ̄m ⇒

⇒ φ̈

(
1 +

3λ2

2F

)
+ 3H̄φ̇

(
1 +

3λ2

2F

)
− λ

2F
φ̇2 = s+

2λ

F
sφ− λ

2F

ρm

H0
2 ⇒

⇒ φ̈+ 3H̄φ̇

(
1 +

3λ2

2F

)
− λ

2F
φ̇2 = s+

2λ

F
sφ− λρ0m

2Fa3H0
2 ⇒

⇒ φ̈+ 3H̄φ̇

(
1 +

3λ2

2F

)
− λ

2F
φ̇2 = s+

2λ

F
sφ− 3λρ0mF0

3 · 2F · F0 · a3H0
2 ⇒

⇒ φ̈+ 3H̄φ̇

(
1 +

3λ2

2F

)
− λ

2F
φ̇2 = s+

2λ

F
sφ− 3Ω0mF0λ

2Fa3
(5.90)

This is a Rayleigh equation[69] which has some similarities with the standard forced-damped
oscillator. However, there are important differences like the presence of the non-linear term of the
field derivative which complicate the analysis and do not allow the use of the sign of the “force”
term as a qualitative simple indicator of the dynamics. Now, considering that F > 0 one can see
that each term from Eq.(5.90) leads the φ field in different direction. If φ̈ > 0, then we end up in
Big Crunch as the field rolls down the potential and the gravity becomes strongly attractive. On
the contrary if φ̈ < 0, then we end up to eternal expansion avoiding the Big Crunch singularity,
as the field moves up the potential and the gravity becomes repulsive as the positive potential
energy of the field eventually dominates.

From Eq.(5.90), one can observe that, the s term drives the scalar field towards the Big Crunch
singularity whereas the other two terms revert the field from Big Crunch. At first, when the scale
factor is small, the term 3Ω0mF0λ

2Fa3 dominates and gives an impulse to the φ field towards negative
values but as the Universe reaches a deSitter expansion and the scale factor becomes larger this
particular term vanishes. Now let us plot the “effective force” as a function of the field for various
cases of (s, λ)[70]
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Figure 5.17: Total “effective force” as a function of the field φ for various cases of (s, λ)

From Fig.5.17 for various cases of (s, λ) one can observe the existence of some critical values
of the φ field, i.e. φcrit., for which the sign of Ftot.(φ) changes and from negative becomes positive.
These particular values for some cases can be seen is Fig.5.17 as blue lines. If the impulse of the
term which is proportional to a−3 is such that the φ field to reach the φcrit. value then we avoid
the Big Crunsh singularity. Otherwise the field will get eventually positive values thus we end
up in the Big Crunch Doomsday. Finally, demanding that Ftot.(φ) = 0 and considering the λcrit.
that we have already calculated numerically (see [70]) one can construct the following table

s λcrit. λchosen φcrit. φmin
0.5 0.11 0.1099 -9.0909 -8.46744
1.0 0.23 0.2200 -4.3478 -4.17967
2.0 0.45 0.4490 -2.2222 -2.18038
3.0 0.63 0.6200 -1.5625 -1.54854
4.0 0.83 0.8290 -1.2048 -1.19371
5.0 1.02 1.0100 -0.9804 -0.97172
6.0 1.17 1.1699 -0.8547 -0.846719
8.0 1.55 1.5490 -0.6452 -0.637996
10.0 1.89 1.8899 -0.5263 -0.49351
11.0 2.13 2.1200 -0.4695 -0.468482
12.0 2.31 2.3000 -0.4329 -0.426898
13.0 2.54 2.5390 -0.3937 -0.387452
14.0 2.74 2.7300 -0.3650 -0.357725
15.0 2.90 2.8990 -0.3448 -0.331974
16.0 3.10 3.0900 -0.3226 -0.318037
18.0 3.47 3.4690 -0.2882 -0.285314
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These particular values of φcrit. correspond to the initial conditions which are fixed in order to
obtain our Universe. If the initial condition are not fixed to such value of course the φcrit. will be
different.

In classical terms, the basic mechanism of our model could be presented as a ball rolling in a
cliff. If the initial force given to the ball is suitable, then the ball will reach the peak of the cliff,
i.e φcritical and continue its movement across the other side. In the opposite scenario, where the
ball will not manage to reach the φcritical it will return in its initial position rolling in the opposite
direction. This can be depicted on the following Fig.5.18

Figure 5.18: Classical analogous of the basic mechanism of the model

Finally an analytical derivation of the φcrit., demanding F (φ)tot. = 0 in Eq.(5.90) and consid-
ering a linear non-minimal coupling F (φ) = 1− λφcrit., as follows

F (φ)tot. = 0⇒ s+
2λ

F
sφcrit. −

3Ω0mF0λ

2Fa3
= 0⇒ φcrit. =

3F0 λΩ0m − 2a3 s

2a3λ s
(5.91)

This is a general method and the φcrit. can be obtained for any form of V and F by deriving the
corresponding Rayleigh equation. Let us now plot the φcrit. as a function of λ for small and large
values of the scale factor[70]

Figure 5.19: The evolution of φcrit.for the
linear potential V = −s · φ and small values
of a

Figure 5.20: The evolution of φcrit.for the
linear potential V = −s · φ and large values
of a
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For large values of the scale factor the φcrit. is the same for any value of s as it was expected
from Eq.(5.91).

5.5.4 Fit to SnIa Data

Having solved the aforementioned system numerically, for linear potential let us examine if
our model provides a better fit to the Union 2.1 Dataset than the quintessence models or the
ΛCDM model. In order to do that we will obtain the minimum χ2 function for various pairs of
(s, λ) using the same procedure as in Subsubsection 5.2.2.1. It has to be mentioned that for the
“χ2 function” there is no analytical expression, therefore all the calculated results were obtained
manually. So, one is able to derive the figure below[70]

Figure 5.21: Fit to the Union 2.1 Dataset for various pairs of (s, λ)

From Fig.5.21 the lowest value appears to be for the pair (s, λ) = (2.0, 0.3) where χ2
s=2.0,λ=0.3 =

570.269. Even though the obtained value is almost to the ΛCDM model, unfortunately it pro-
vides marginally worse fit. More information about the best fit “χ2 function” can be obtained
through the 1σ and 2σ probability contours. Based on the numerically obtained values for the
“χ2 function” we construct the contours in the parameter space of s and λ as follows[70]
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Figure 5.22: 1σ χ2 contour for
linear potential V = −s · φ

Figure 5.23: 2σ χ2 contour for linear potential
V = −s · φ

It has to be mentioned that in Fig.5.22 and Fig.5.23 one could observe a peculiar line for
s = 1.0. This is due to the fact that for larger values of λ our code had some difficulties
concerning the conditions to the present time to be satisfied. Based on Fig.5.22 and Fig.5.23 one
could calculate the probability that the numerical χ2 lies in the 1σ and 2σ confidence level from
the χ2 of the ΛCDM via the equation [126]

P (s, λ) = N e−χ2(s,λ)/2 (5.92)

5.5.5 Alternative Forms of Potential

Let us now focus on an alternative form of potential in order to see if the fit to the data is
better than the linear potential. Of course the equations for modified gravity remain the same
except the Rayeleight equation Eq.(5.90).

5.5.5.1 Dynamics for V = s |φ|n

Assuming the same initial conditions as before, we solve the new system of equations numer-
ically, i.e Eq.(5.69)-(5.73) considering that V (φ) = s |φ|n. From the numerical code one can see
the same behaviour as that of the linear potential, i.e the existence of critical points. Therefore
the figure for the scale factor is[70]
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Figure 5.24: The scale factor, in a logarithmic scale, for representative quintessence with V (φ) =
s |φ|n, s = 1, n = 0.8 and various values of slopes λ.

The curves stop because once again F (φ)→ 0. When the field rolls towards zero and achieve
positive values instead of a Big Crunch Doomsday it oscillates around zero. When λ is larger
than the critical value to the corresponding s the field shifts away from the singularity as in for
the linear potential. This can be seen clearly in the figure below[70]

Figure 5.25: The evolution of the scalar field for s = 1, n = 0.8 and various values of λ above
and below the critical values λcrit ' 0.15.

Based on the existence of critical points for the linear potential, we consider the possibility for
the existence of critical values for λ and for this particular choice of potential. Working as before
for many pairs of (s, λ) we derived numerically the λcritical as a function of s (see [70]). Once
again, as it was expected, the critical points increase almost linearly with s as it can be seen in
Fig.5.26[70]
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Figure 5.26: The critical values of λ for various slopes of s. The potential form is V = s · |φ|n

The relation for the linear fit is λcrit. ' −0.071 + 0.191s. The explanation for this linearity is
possible the same as that for the linear potential.

Finally in order to understand the existence of the critical points we should study, once more,
the effective evolution for the scalar field φ, i.e Rayleigh equation. For the derivation we will start
from Eq.(5.88) and substitute that F (φ) = 1− λ · φ and V = s · |φ|n

φ̈+ 3
ȧ

a
φ̇+ Fφ

(
−ρm

2F
+
φ̇2

2F
+

9HḞ

2F
+

3F̈

2F
− 2V

F

)
+ Vφ = 0⇒

⇒ φ̈+ 3
ȧ

a
φ̇− (−λ)

(
ρm
2F
− 3

(−λ φ̈)

2F
− 9H

(−λφ)

2F
− φ̇

2F
+ 2

s|φ|n

F

)
+ ns|φ|n−1 ε(φ) = 0 (5.93)

where ε(φ) =

{
−1, for φ < 0

1, for φ > 0
is the sign function. With no loss of generality we may focus on

the half period T
2

for which φ < 0⇒ ε(φ) = −1. Hence Eq.(5.93) can be written as11

φ̈+ 3
ȧ

a
φ̇+

λ ρm
2F

+
3λ2 φ̈

2F
+

9Hλ2φ̇

2F
− λφ̇2

2F
− 2λsφn

F
− nsφn−1 = 0

Now collecting the terms, we obtain the following equation

φ̈

(
1 +

3λ2

2F

)
+ 3H

(
1 +

3λ2

2F

)
φ̇− λφ̇2

2F
= −λρm

2F
+

2λsφn

F
+ nsφn−1 (5.94)

Next, in order to be accurate we have to use the rescaled quantities with the present day Hubble
parameter, i.e H → H̄ and ρm → ρ̄m. Therefore Eq.(5.94) takes the form

φ̈

(
1 +

3λ2

2F

)
+ 3H̄

(
1 +

3λ2

2F

)
φ̇− λφ̇2

2F
= −λρ̄m

2F
+

2λsφn

F
+ nsφn−1 ⇒

φ̈

(
1 +

3λ2

2F

)
+ 3H̄

(
1 +

3λ2

2F

)
φ̇− λφ̇2

2F
= − λ

2F

ρm
H0

2
+

2λsφn

F
+ nsφn−1 ⇒

11During our calculations with no loss of generality we assume that the power n is odd. If n was even, then the
last two terms would have the same sign but it would be positive.
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φ̈

(
1 +

3λ2

2F

)
+ 3H̄

(
1 +

3λ2

2F

)
φ̇− λφ̇2

2F
= − λρ0m

2Fa3H0
2

+
2λsφn

F
+ nsφn−1 ⇒

φ̈

(
1 +

3λ2

2F

)
+ 3H̄

(
1 +

3λ2

2F

)
φ̇− λφ̇2

2F
= −3λΩ0mF0

2Fa3
+

2λsφn

F
+ nsφn−1 (5.95)

Eq.(5.95) is the Rayleigh equation for V = s|φ|n and each term leads the φ field in different
directions which justifies, as before, the existence of critical points. If φ̈ > 0, then the φ field
will move down the potential towards zero leading to oscillation(blue arrows). If φ̈ < 0, then
the field will move up to the potential and will revert into positive values shifting away from the
oscillations(green arrow).

From Eq.(5.95) one can see that the term that is analogous to a−3 is negative hence it pushes
the field φ towards negative values, shifting away from the oscillations and leading in a deSitter
expansion. The other two terms, i.e. 2λsφn

F
and nsφn−1, are positive, therefore they lead the φ

field in positive values, i.e. to oscillations. All this can be seen in the following figure

Figure 5.27: Basic mechanism for V = s · |φ|n

5.5.5.2 Fit to SnIa Data

Let us examine if the fit of our model for V = s·|φ|n to the Union2.1 Dataset is better than the
ΛCDM or the scalar tensor quintessence with linear potential. Following the same procedure as
before we calculate manually the “χ2 function” for various cases of (s, λ) up to the value s = 4.0.
The fit can be seen below[70]
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Figure 5.28: Fit to the Union 2.1 Dataset for various cases of (s, λ) and V = s · |φ|n, with n = 0.8

From Fig.5.28 the lowest value for χ2 appears to be (s, λ) = (3.0, 0.3), where χ2
s=3.0,λ=0.3 =

570.287. Unfortunately the fit for this particular choice of potential is worse not only from the
one that emerges for linear potential, but also from the ΛCDM model.

Based on the numerically obtained values for the “χ2 function” we are able construct the
correspondng contours in the parameter space of s and λ as follows[70]

Figure 5.29: 1σ χ2 contour for
potential V = s · |φ|n

Figure 5.30: 2σ χ2 contour for potential V =
s · |φ|n

Once again in Fig.5.30 one could observe peculiar lines for various pairs of s and λ. Once
more this is due to the fact that for larger values of λ our code had some difficulties concerning
the conditions to the present time to be satisfied and this difficulty is much more intense for this
case of potential. Therefore for the 2σ contour we considered more pairs of (s, λ)



Chapter 6

Conclusions and Future Prospects

6.1 Conclusions

The purpose of this thesis was to study some of the most interesting possible models attempt-
ing to explain the observed accelerating expansion of the Universe. These possible explanations
correspond to specific models in the context of GR, the quintessence models [87–90], and modified
theories of gravity, the scalar tensor quintessence models [93–95]. For this purpose recent cosmo-
logical data have been used and studied extensively (supernovae type Ia datasets[116, 125]) as
consistency tests to our models.

The simplest candidate model is none other than the cosmological constant that has negative
pressure and it is known as the Λ CDM model[123, 137, 138]. Even though the ΛCDM model
provides an excellent fit to the cosmological data to date and has the additional advantage of
simplicity due to a single free parameter, it is somewhat problematic taking into account the fact
that faces two major issues/problems that have not been answered yet

� The Cosmological Constant Problem: Observationally, the cosmological constant density is
120 orders of magnitude smaller than the energy density associated with the Planck scale.
How could the cosmological constant have been so large during the inflation period and so
small today?

� The Cosmic Coincidence Problem: Why is the energy density of dark energy dominant
today?

These particular challenges led to many alternative theories in order to explain the accelerated
expansion of the Universe.

One of the possible solutions is a scalar field minimally coupled to gravity called quintessence.
The quintessence field has the following Lagrangian[92]

Lquin. =
1

2
φ̇2 − V (φ)

This model was studied extensively as an alternative theory for DE and the dynamical equations
Eq.(3.13) and Eq.(3.15) were proven.

Even though the quintessence field has dynnamical evolution and thus can solve coincidence
problem[81], the origin of the scalar field is still a problem. So, as a possible solution scalar
tensor quintessence model have been proposed, which have the additional advantage of providing
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a potential solution to the origin problem as the physical origin of the scalar field is the dynamical
“Newton’s constant”[93–95]. For this kind of models[47, 96]

Geff =
1

F (φ)

2F + 4
(
dF
dφ

)2

2F + 3
(
dF
dφ

)2


The cosmological dynamics for general scalar tensor quintessence field was studied extensively.
The dynamical equations for this kind of alternative model were obtained by varying the action
with a general metric and then use FRW metric and by using the FRW metric directly in Einstein-
Hilbert action and vary with respect to the scale factor. The second method that was used, is
particular useful and can lead to dynamical equations for a wide range of cosmological models[66–
69]. Of course the equations that we calculated were the same as it was expected[69]. Next we
rescaled the dynamical equations using the present day Hubble parameter and obtain the density
parameters for matter Eq.(4.27) and dark energy Eq.(4.28).

Finally the cosmological observational probes were presented, which can be categorised into
geometrical and dynamical ones[104]. Considering the supernovae type Ia as standard candles
astronomers could measure many useful quantities such as the luminosity distance. Using the
luminosity distance one could define the apparent magnitude and the distance modulus of the
SnIa. All these quantities have been calculated and published in datasets such as the Gold[116]
and the Union2.1 dataset[125] that were used in our analysis as a consistency test to the models
that we have studied theoretically.

For the quintessence models, solving the system numerically, we observed that it can mimic the
basic mechanism of the cosmological constant however using the Gold and the Union2.1 datasets
was deduced that they have serious problems to exceed the quality of fit of a cosmological constant.
This led to the introduction of other dynamical parametrizations, such the Linear Ansanz[115]
and the CPL Ansanz[128, 129], which have been tested with the information criteria AIC[131]
and BIC[132], which are measures of the relative quality of statistical models (parametrizations)
for a given set of data which penalize models for the number of their parameters. Even though
they provide a better fit it is not significantly better than that of the ΛCDM model despite the
additional number of parameters. It has to be mentioned that the CPL and Linear Ansanz do
not correspond to any specific physical model. They are ad-hoc parametrizations of the evolution
of the equation of state parameter.

Then a dynamical analysis of scalar tensor quintessence models was made. Solving the system
of Eq.(5.69)-Eq.(5.73) numerically, considering a generic form of the potential V (φ) = −s φ and
F (φ) = 1 − λφ for the linear nonminimal coupling. From the numerical solution was deduced
that when the λ becomes larger than a critical value, unique for every s, then the φ field instead
of rolling down, it starts rolling up its potential towards negative field values and as a result it
rolls away from the Big Crunch Singularity, something that is a unique feature for this particular
category of models. This particular behaviour of the field can be explained considering the
Rayleigh equation[69]

φ̈+ 3H̄φ̇

(
1 +

3λ2

2F

)
− λ

2F
φ̇2 = s+

2λ

F
sφ− 3Ω0mF0λ

2Fa3

In the beginning the term proportional to the scale factor dominates and gives an initial impulse
to the field towards negative values but as the Universe reaches a deSitter expansion and the
scale factor becomes larger this particular term vanishes. If the impulse of the term which is
proportional to a−3 is such that the φ field to reach a φcrit. value then we avoid the Big Crunsh
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singularity. Otherwise the field will get eventually positive values thus we end up in the Big
Crunch Doomsday. When the term that is proportional to a−3 vanishes the term s leads the field
to Big Crunch but the term 2λ

F
sφ leads the field to shift away from the singularity. When λ is

small the dominant term is s leading the field to the singularity. However, as λ gets larger then
the 2λ

F
sφ term eventually dominates over s and as a result the φ field evolves towards negative

values (up its potential).
An analytical expression for the φcrit. was obtained and we numerically calculated the values

of φcrit. up to the value of s = 18 . Also we calculate a numerical approximation to the relation
between λ = f(s), which appears to be linear. The fact that these two parameters are linearly
related is very striking and it could be due to the fact of fixing the initial conditions, and in
particular, the initial value of the field in order to obtain our Universe, since when we run the
code for different values there was no linearity. As a result for this fixing is the specific energy of
the φ field which corresponds to value below or above φcrit..

Also the χ2 function[126] for various pairs of (s, λ) was calculated manually and the corre-
sponding contour plots in the parameter space of s and λ were constructed, in order to see which
pair of parameter is consistent with the Union2.1 Dataset[125]. In our analysis the range of the
parameters that correspond to the 1σ confidence level contour are 0.5 ≤ s ≤ 3 and 0 ≤ λ ≤ 1.05.
Finally we repeated the same analysis (analytical and numerical) for alternative potential and
in particular of the form V = s |φ|n. For this kind of potential the same basic mechanism was
observed, as before. When the field rolls towards zero and achieve positive values instead of a
Big Crunch Doomsday it oscillates around zero. On the other hand if λ is larger than the critical
value of λ to the corresponding s the field shifts away from the singularity and reaches a deSit-
ter evolution as in for the linear potential. The corresponding 1σ range of parameters for this
particular potential are 0.5 ≤ s ≤ 3 and 0 ≤ λ ≤ 0.75.

6.2 Future Prospects

The avoidance of Cosmic Doomsday is a very striking result because it is a unique feature for
models of this nature. The Big Crunch is one of the scenarios predicted by many cosmological
models in which the Universe may end[124, 135, 139]. This scenario is supported and from the
quintessence model that we have already studied extensively in this thesis. However for the scalar
tensor quintessence models considering a generic form of the potential V (φ) = −s φ and for the
linear nonminimal coupling F (φ) = 1 − λφ the Big Crunch that would occur in the context of
General Relativity is avoided[69].

With that in mind we are planning to explore furthermore this model, numerically and an-
alytically. An interesting extension of this study is the analytical derivation of the numerically
derived values of λcrit.(s) which appears to be an approximately linear function and the possible
dependence of linearity on the initial values. Also one could extend the Eq.(5.91) for general forms
of the potential V and the nonminimal coupling F . Evolving this theory, one could investigate
nonlinear coupling to gravity, e.g. F (φ) = 1 − λφ2, or couplings with a minimum in general,
which will give a greater understanding of our results. For this kind of coupling to gravity we
expect the same behaviour as in linear coupling, i.e the total effective force to get positive values.

Another interesting extension of this project is to derive a general form for the virial theorem
derived in Brans-Dicke scalar oscillations. The virial theorem for Brans-Dicke scalar oscillations
connecting the mean kinetic and potential energies was derived in Ref.[140]. However the action
in Ref.[140] is similar to the one that we have studied in this thesis. This particular extension
would be a very interesting extension. Finally another prospect to this work is to study the
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physics of extreme cases, i.e. what happens when (in the future) F gets negative, what does
it mean physically and when does it happen numerically. For F < 0 the graviton has negative
mass[47] which leads to an unstable Universe which can lead to a metastable state.

Conclusively there is a wide field of research, most importantly theoretical, considering these
theories of gravitation and their promising results.
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Chapter A

Analytical Calculations for Standard Cosmology

A.1 Riemann Tensor and Bianchi Identities

The Riemann tensor displays some very interesting algebraic identities. Starting from its
definition[59]

Ra
βµν ≡ Γa βν,µ − Γa βµ,ν + Γa σµΓσ βν − Γa σνΓ

σ
βµ (A.1)

one could prove that (working on the local inertial frame, where at a given event the metric is
the flat spacetime metric, i.e Γa µν = 0)

Ra
βµν = Γa βν,µ − Γa βµ,ν (A.2)

Now, using the definition of the Christoffel’s symbols, i.e Eq.(2.7) it is easily obtained that1

Γa βν,µ =
1

2
gaδ (gδβ,νµ + gδν,βµ − gβν,δµ)

Γa βν,µ =
1

2
gaδ (gδβ,µν + gδµ,βν − gβµ,δν)

Since gaδ ,µ = 0(see below) it is straightforward to show that the Riemann tensor takes the
form

Ra
βµν =

1

2
gaδ (XXXgδβ,νµ + gδν,βµ − gβν,δµ −XXXgδβ,µν − gδµ,βν + gβµ,δν)⇒

⇒ Ra
βµν =

1

2
gaδ (gδν,βµ − gβν,δµ − gδµ,βν + gβµ,δν) (A.3)

where we used the fact that partial derivatives always commute. Next, lowering the index a with
the metric and setting a = λ in Eq.(A.3) we get

Raβµν ≡ gaλR
λ
βµν =

1

2
gaλg

λδ (gδν,βµ − gβν,δµ − gδµ,βν + gβµ,δν) =
1

2
δδa (gδν,βµ − gβν,δµ − gδµ,βν + gβµ,δν)⇒

⇒ Raβµν =
1

2
(gaν,βµ − gβν,aµ − gaµ,βν + gβµ,aν) (A.4)

We can use this result to discover the symmetries of the Riemann Tensor. Using Eq.(A.4) it is
straightforward to show that

Raβµν = −Rβaµν = −Raβνµ = Rµνaβ

1Here we have to mention that during this section of the appendix we use the notation Γa βν,µ instead of Γaβν,µ.
In reality the first is the right one but the blank in the indexes is skipped for simplicity.
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i.e, that the Riemann tensor is antisymmetric on the final pair and second pair of indices, and
symmetric on exchange of the two pairs.

Returning to the definition of Eq.(A.4) it is easy to prove that differentiating with respect to
xλ we get

Raβµν,λ =
1

2
(gaν,βµλ − gβν,aµλ − gaµ,βνλ + gβµ,aνλ) (A.5)

Using Eq.(A.5) and the fact that the partial derivatives commute it is straightforward to prove
the Bianchi identity

Raβµν,λ +Raβλµ,ν +Raβνλ,µ = 0

This equation is valid in a local inertial frame, therefore in a general one we get

Raβµν;λ +Raβλµ;ν +Raβνλ;µ = 0 (A.6)

This is a tensor equation, therefore valid in any coordinate system. It is called the Bianchi
identity. By contracting both sides of the aforementioned equation with a pair o metric tensors,
one can end up with

gβν gaµ (Raβµν;λ +Raβλµ;ν +Raβνλ;µ) = 0⇒ gβν (Rµ
βµν;λ −Rµ

βµλ;ν +Rµ
βνλ;µ) = 0⇒

⇒ Rν
ν;λ −Rν

λ;ν −Rνµ
νλ;µ = 0 (A.7)

The first term of Eq.(A.7) on the left contracts to yield a Ricci scalar, while the third term
contracts to yield a mixed Ricci tensor namely

R;λ −Rν
λ;ν −Rµ

λ;µ = 0⇒ R;λ = 2Rµ
λ;µ (A.8)

where in the last term we changed the dummy index from µ to ν and combined them into a single
term.

Alternatively one can see that Eq.(A.8) can be written as

∇µR
µ
λ =

1

2
∇λR⇒ ∇λR

λ
µ =

1

2
∇µR⇒ ∇λ

(
Rλ

µ −
1

2
δλ µR

)
= 0 (A.9)

These are the twice-contracted Bianchi identities, often simply also called the Bianchi identities.
Since the mixed metric tensor is equivalent to the Kronecker delta and since the covariant deriva-
tive of the metric tensor is zero (so it can be moved in and out of the scope of any derivative),
then

∇λ

(
Rλ

µ −
1

2
gλµR

)
= 0⇒ ∇λ

(
Rλµ −

1

2
gλµR

)
= 0⇒ ∇µGµν = 0 (A.10)

A.2 Continuity Equation for Friedmann Equations

In order to prove Eq.(2.27), we will need Eq.(2.24) and Eq.(2.26). Starting from Eq.(2.24)

ȧ2

a2
=

8πG

3
ρ− k

a2
⇒ ȧ2 =

8πG

3
ρa2 − k ·d/dt

==⇒

⇒ 2ȧä =
8πG

3

(
ρ̇a2 + 2aȧρ

)
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By using the second Friedmann equation, i.e Eq.(2.26) we end up with

2
ȧ

a

[
−4πG

3
(ρ+ p)

]
=

8πG

3

(
ρ̇+ 2

ȧ

a
ρ

)
⇒ − ȧ

a
(ρ+ 3p) = ρ̇+ 2

ȧ

a
ρ⇒

⇒ ρ̇+ 3
ȧ

a
(ρ+ p) = 0.

i.e Eq.(2.27). One could see that the continuity equation is not an independent equation because
of the Bianch identities. The Einstein tensor satisfies the Bianchi identities[2], i.e ∇µGµν = 0⇒
∇νG

µν = 0. Therefore the same must be true for the energy-momentum tensor ∇νT
µν = 0 taking

into account Eq.(2.40).

A.3 Variation of Ricci Scalar

We begin with the definition of Ricci Scalar

R = gµνRµν ⇒ δR = Rµνδg
µν + gµνδRµν (A.11)

But the Riemann curvature tensor is defined as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

δRρ
σµν = ∂µδΓ

ρ
νσ − ∂νδΓρµσ + δΓρµλΓ

λ
νσ + ΓρµλδΓ

λ
νσ − δΓ

ρ
νλΓ

λ
µσ − ΓρνλδΓ

λ
µσ

The covariant derivative of a tensor with mixed indices, in general, is2

∇λC
i
jk = ∂λC

i
jk + ΓiλmC

m
jk − ΓmλjC

i
mk − ΓmλkC

i
jm (A.12)

Hence we can calculate

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + ΓρσλδΓ

σ
νµ − ΓσνλδΓ

ρ
σµ − ΓσµλδΓ

ρ
νσ (A.13)

We can now observe that the expression for the variation of Riemann curvature tensor is equal
to the difference of two such terms

∇µ(δΓρνσ) = ∂µ(δΓρνσ) + ΓρκµδΓ
κ
νσ − ΓκνµδΓ

ρ
κσ − ΓκσµδΓ

ρ
νκ

∇ν(δΓ
ρ
µσ) = ∂ν(δΓ

ρ
µσ) + ΓρκνδΓ

κ
µσ − ΓκµνδΓ

ρ
κσ − ΓκσνδΓ

ρ
µκ

and by setting κ = λ we obtain

∇µ(δΓρνσ)−∇ν(δΓ
ρ
µσ) = ∂µ(δΓρνσ) + ΓρλµδΓ

λ
νσ −����

�ΓλνµδΓ
ρ
λσ − ΓλσµδΓ

ρ
νλ − ∂ν(δΓ

ρ
µσ)−

− ΓρλνδΓ
λ
µσ +���

��ΓλµνδΓ
ρ
λσ + ΓλσνδΓ

ρ
µλ = δRρ

σµν (A.14)

We may now obtain the variation of the Ricci curvature tensor simply by contracting two indices
of the variation of the Riemann tensor

δRρ
µσν = ∇σ(δΓρνµ)−∇ν(δΓ

ρ
µσ)

contraction
======⇒ δRµν = ∇ρ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
ρµ)

Therefore, the variation of the Ricci scalar with respect to the inverse metric is given by

δR = Rµνδg
µν +∇σ(gµνδΓσµν − gµσδΓρρµ) (A.15)

2The rule is that for each contravariant (upper) index in the tensor, there is a positive term with a Christoffel
symbol, and for each covariant (lower) index, there is a negative term.
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A.4 Proof of ∇σg
µν = 0

In order to prove the requested equation we will use only the definition of the covariant
derivative

∇σgµν = gµν,σ − Γλσµgλν − Γλσνgµλ = gµν,σ −
1

2
gλνg

λρ (gσρ,µ + gµρ,σ − gσµ,ρ)−
1

2
gµλg

λρ (gσρ,ν + gνρ,σ − gσν,ρ) =

= gµν,σ −
1

2
δρν (gσρ,µ + gµρ,σ − gσµ,ρ)−

1

2
δρµ (gσρ,ν + gνρ,σ − gσν,ρ) =

= gµν,σ −
1

2
(���gσν,µ + gµν,σ −���gσµ,ν)−

1

2
(���gσµ,ν + gνµ,σ −���gσν,µ) = gµν,σ −

1

2
(gµν,σ + gνµ,σ) =

= gµν,σ −
1

2
(gµν,σ + gµν,σ) = gµν,σ −

A2

A2
gµν,σ = 0 (A.16)

Considering Eq.(A.16) one can easily obtain that

∇σg
µν = ∇σgκλg

κµgλν = 0⇒ ∇σg
µν = 0 (A.17)

Similarly we get
gµν;ρ = gµν;ρ = gµν;ρ = 0.

A.5 Variation of the Square Root of the Determinant of

the Metric Tensor

Let us now compute the variation of the square root of the determinant of the metric tensor.
We do tha calculation fully general for n-dimensional Riemannian spaces and then apply it for the
pseudo-Rimanannian 4-dimensional space of General Relativity. Firstly, we write the determinant
simply as

g ≡ det (gaβ) (A.18)

We have that

δ (
√
g) =

1

2
√
g
δg

Now, for any square n× n matrix A it hold that

det (A) = eTr(A) (A.19)

Setting A→ gaβ to (A.19), we arrive at

g = det (gaβ) = eTr(gaβ) (A.20)

and under the variation gaβ → gaβ + δgaβ it follows that

det(gaβ + δgaβ) = eTr(gaβ+δgaβ) = eTr(gaβ)+Tr(δgaβ) = eTr(gaβ)︸ ︷︷ ︸
≡g

eTr(δgaβ) (A.21)

where on going from the second to the third equality we employed the linearity of the trace. Since
the variations δg are small, in the expansion of eTr(δgab) we can neglect second and higher order
terms and we shall have

eTr(δgab) ≈ 1 + Tr(δgab) (A.22)
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and therefore
det(gaβ + δgaβ) ≈ g (1 + Tr(δgaβ)) (A.23)

but, by the definition of the trace
Tr(δgaβ) = gaβδgaβ (A.24)

Hence Eq.(A.23) can be written as

det(gaβ + δgaβ) ≈ g
(
1 + gaβδgaβ

)
(A.25)

Using the latter to the definition of the variation, we arrive at

δg = δ (det(gaβ)) = det(gaβ + δgaβ)− det(gaβ) ≈
≈ g

(
1 + gaβδgaβ

)
− g = ggaβδgaβ ⇒ δg = −ggaβδgaβ (A.26)

Finally using (A.26) we are ready to prove (2.38) as follows

δ (
√
g) =

1

2
√
g
δg = −1

2

(
√
g)�2

�
�
√
g
gaβδg

aβ = −1

2

√
ggaβδg

aβ ⇒

⇒ δ (
√
g) = −1

2

√
ggaβδg

aβ (A.27)

Now, in order to get the expression for the 4-dimensional pseudo-Riemannian space of General
Relativity, we simply replace g → −g and let the indices run from 0 to 3 (The usual Greek ones).
We then have

δ
(√
−g
)

= −1

2

√
−ggµνδgµν (A.28)

where µ, ν = 0, 1, 2, 3 as usual.

A.6 Friedmann Equations for ΛCDM Model

In order to derive the Friedmann equations for the ΛCDM model, i.e. Eq.(2.56) (2.57), we
will start from the Einstein field equations for the ΛCDM model calculating the (00) component
and (11) component as follows

� (00) component:

G00 = 8πGT00 ⇒ R00 −
1

2
g00R− Λg00 = 8πGT00 ⇒ −3

ä

a
− 1

2
· 1 ·

[
−6

(
ä

a
+
ȧ2

a2
+
k

a2

)]
− Λ =

= 8πGT00 ⇒ −
�
�
�

3
ä

a
+
�
�
�

3
ä

a
+ 3

ȧ2

a2
+ 3

k

a2
− Λ = 8πGρ⇒

(
ȧ

a

)2

+
k

a2
=

8πG

3
ρ+

Λ

3
⇒

⇒
(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− k

a2
(A.29)

For Λ = 0 Eq.(A.29) one can revert to Eq.(2.24) as it was expected.
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� (11) component:

G11 = 8πGT11 ⇒ R11 −
1

2
g11R− Λg11 = 8πGT11 ⇒

⇒ aä+ 2ȧ2 + 2k

1− kr2
− 1

2

(
− a2

1− kr2

)[
−6

(
ä

a
+
ȧ2

a2
+
k

a2

)]
− Λ

(
a2

1− kr2

)
= 8πGp

a2

1− kr2
⇒

⇒ 2aä+ ȧ2 + k − Λa2 = −8πGpa2 :a2

=⇒ 2
ä

a
+
ȧ2

a2
+
k

a2
− Λ = −8πGp

Eq.(A.29)
=====⇒

⇒ 2
ä

a
+

8πGρ

3
−
�
�
�k

a2
+

Λ

3
+
�
�
�k

a2
− Λ = −8πGp⇒ 2

ä

a
+

8πGρ

3
− 2Λ

3
= −8πGp⇒

⇒ ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(A.30)

Once again for Λ = 0 Eq.(A.30) one can revert to Eq.(2.26).



Chapter B

Analytical Calculations for Modified Gravity

First let us take a look at the variations of the Christoffel symbols

δΓσαβ = δ
[1

2
gσγ(gγα,β + gγβ,α − gβα,γ)

]
=

1

2
δgσγ(gγα,β + gγβ,α − gβα,γ)+

+
1

2
gσγ(δgγα,β + δgγβ,α − δgβα,γ)

However,
∇γδgαβ = δgαβ,γ − Γσγαδgσβ − Γσγβδgασ (B.1)

therefore it is straightforward to show that

δΓσαβ =
1

2
δgσγ(gγα,β + gγβ,α − gβα,γ) +

1

2
gσγ(∇βδgγα +XXXXXΓσβγδgσα + Γσβαδgγσ +∇aδgγβ +XXXXXΓσαγδgσβ+

+Γσαβδgγσ −∇γδgαβ −XXXXXΓσγαδgσβ −XXXXXΓσγβδgασ =
1

2
δgσγ(gγα,β + gγβ,α − gβα,γ)+

+
1

2
gσγ(∇aδgγβ +∇βδgγα −∇γδgαβ + 2Γλβαδgγλ) (B.2)

Using the equations that we showed in Appendix A

δgαβ = −gαµgβνδgµν

δgαβ = −gαµgβνδgµν
gγα,β =���:

0gγα;β + Γλγβgλα + Γλαβgγλ

gγβ,α =���:
0gγβ;α + Γλγαgλβ + Γλβαgγλ

gβα,γ =���:
0gβα;γ + Γλβγgλα + Γλαγgβλ

we derive

δΓσβα =
2

2
δgσνΓλαβgνλ − δgµνδσµgλνΓλβα +

1

2
gσγ(∇aδgγβ +∇βδgγα −∇γδgαβ)

δΓσαβ =
1

2
gσγ(∇aδgγβ +∇βδgγα −∇γδgαβ) =

1

2
gσγ
[
∇β(−gγµgανδgµν) +∇a(−gγµgβνδgµν)−

−∇γ(−gβµgανδgµν)
]

= −1

2
δσµgαν∇β(δgµν)− 1

2
δσµgβν∇α(δgµν) +

1

2
gβµgαν∇σ(δgµν)⇒

⇒ δΓσβα = −1

2
gαν∇β(δgσν)− 1

2
gβν∇α(δgσν) +

1

2
gβµgαν∇σ(δgµν) (B.3)
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In the above calculations we used the fact that, in the local inertial frame ∇agµν = 0. Taking
into consideration Eq.(B.3) we finally obtain

gµνδΓσµν = −1

2
(gµνgνα∇µδg

ασ + gµνgµα∇νδg
ασ − gµνgµαgνβ∇σδgαβ)⇒

⇒ gµνδΓσµν = −∇aδg
aσ +

1

2
gaβ∇σδgaβ

i.e Eq.(4.4). In a similar way one can prove Eq.(4.5)



Chapter C

Mathematica Algorithms

One of the most powerful tools to a physicist is programming. It is really convenient for
him because programming gives him the opportunity to solve and understand in great depth
complicated concepts and phenomena. During this thesis we are unsing Mathematica so we can
reproduce most of the figures shown in Chapter 5. In this appendix we are going to reproduce
some of the figures and give detailed analysis concerning the commands we used so the whole
algorithm is able to run and give us useful results.

C.1 Quintessence Models

C.1.1 Reproduction of Fig.5.4-Fig.??

Let us start with the reproduction of Fig.5.4, i.e the evolution of the scalar phield φ for
quintessence models with linear potential of slope s = 1. First of all we put in Mathematica
Eq.(3.13) and Eq.(3.15) along with the initial conditions and solve the system numerically using
the command NDSolve. In what follows φi is referred to as f0, s is referred to as ss, Ω0m is
referred to as om0m and ti and t0 are the initial and final time respectively

aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];

aad = D[aa, t];aad = D[aa, t];aad = D[aa, t];

aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];

fid = D[fi, t];fid = D[fi, t];fid = D[fi, t];

fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];

f0 = −0.8; ss = 1.0; ti = 0.000025; t0 = 3.79; om0m = 0.3;f0 = −0.8; ss = 1.0; ti = 0.000025; t0 = 3.79; om0m = 0.3;f0 = −0.8; ss = 1.0; ti = 0.000025; t0 = 3.79; om0m = 0.3;

eq1 = aadd/aa + fid∧2 + ssfi + om0m/(2aa∧3) == 0;eq1 = aadd/aa + fid∧2 + ssfi + om0m/(2aa∧3) == 0;eq1 = aadd/aa + fid∧2 + ssfi + om0m/(2aa∧3) == 0;

eq2 = fidd + 3 fid(aad/aa)− ss == 0;eq2 = fidd + 3 fid(aad/aa)− ss == 0;eq2 = fidd + 3 fid(aad/aa)− ss == 0;

condition1 = f [ti]==f0;condition1 = f [ti]==f0;condition1 = f [ti]==f0;

condition2 = f ′[ti]==0;condition2 = f ′[ti]==0;condition2 = f ′[ti]==0;
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condition3 = a[ti] == (9om0m/4)∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0m/4)∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0m/4)∧(1/3) ti∧(2/3);

condition4 = a′[ti] == (2/3)(9om0m/4)∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0m/4)∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0m/4)∧(1/3) ti∧(−1/3);

solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4},solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4},solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4},

{aa, fi}, {t, ti, t0},MaxSteps→ 100000000];{aa, fi}, {t, ti, t0},MaxSteps→ 100000000];{aa, fi}, {t, ti, t0},MaxSteps→ 100000000];

Then we plot Fig.5.4 using the command Plot as long as the command Part in order to fix
the appropriate solution for the φ field. The other commands such as PlotStyle, PlotRange, etc.
concern exclusively the configuration of the plot

fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];

asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];

Plot[fsol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “φ(t)”},Axes→ False,PlotRange→ All]Plot[fsol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “φ(t)”},Axes→ False,PlotRange→ All]Plot[fsol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “φ(t)”},Axes→ False,PlotRange→ All]

Now concerning the reproduction of Fig.5.5 and ?? we use once again the Plot command as
follows

Plot[asol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “α(t)”},Axes→ False,PlotRange→ {0, 5.}]Plot[asol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “α(t)”},Axes→ False,PlotRange→ {0, 5.}]Plot[asol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “α(t)”},Axes→ False,PlotRange→ {0, 5.}]

vfinal[t1 ]:=fsol/.t->t1;vfinal[t1 ]:=fsol/.t->t1;vfinal[t1 ]:=fsol/.t->t1;

Plot[−ss ∗ vfinal[t], {t, ti, t0},Frame→ True,Axes→ False,PlotRange→ All,FrameLabel→ {t, “V(φ(t))”}]Plot[−ss ∗ vfinal[t], {t, ti, t0},Frame→ True,Axes→ False,PlotRange→ All,FrameLabel→ {t, “V(φ(t))”}]Plot[−ss ∗ vfinal[t], {t, ti, t0},Frame→ True,Axes→ False,PlotRange→ All,FrameLabel→ {t, “V(φ(t))”}]

Following the same procedure and using different values for s one is able to derive Fig.5.6

C.1.2 Reproduction of Fig.5.7

In order to reproduce Fig.5.7 we have to construct the equation of state parameter for various
slopes of s. Let us recreate the code for s = 1. We start our algorithm with the exact same
analysis as the one we used in Appendix C.1 and using Eq.(3.9) we construct the equation of
state parameter in the beginning as a fuction of t and afterwards as a function of redshift

tt = Part[FindRoot[as[t]==1, {t, 1}], 1, 2];tt = Part[FindRoot[as[t]==1, {t, 1}], 1, 2];tt = Part[FindRoot[as[t]==1, {t, 1}], 1, 2];

tas[a ?NumericQ]:=Part[FindRoot[as[t] == a, {t, 1}], 1, 2];tas[a ?NumericQ]:=Part[FindRoot[as[t] == a, {t, 1}], 1, 2];tas[a ?NumericQ]:=Part[FindRoot[as[t] == a, {t, 1}], 1, 2]; enf = 0.5dfsol∧2− ssfsol;enf = 0.5dfsol∧2− ssfsol;enf = 0.5dfsol∧2− ssfsol;

ppf = 0.5dfsol∧2 + ssfsol;ppf = 0.5dfsol∧2 + ssfsol;ppf = 0.5dfsol∧2 + ssfsol;

wft[t1 ]:=ppf/enf/.t->t1;wft[t1 ]:=ppf/enf/.t->t1;wft[t1 ]:=ppf/enf/.t->t1;

wfa[a ]:=wft[tas[a]];wfa[a ]:=wft[tas[a]];wfa[a ]:=wft[tas[a]];

wfz[z ]:=wfa[1/(z + 1)];wfz[z ]:=wfa[1/(z + 1)];wfz[z ]:=wfa[1/(z + 1)];

Plot[wfz[z], {z, 0, 2},Frame→ True,PlotRange→ All,FrameLabel→ {z, “w(z)”}]Plot[wfz[z], {z, 0, 2},Frame→ True,PlotRange→ All,FrameLabel→ {z, “w(z)”}]Plot[wfz[z], {z, 0, 2},Frame→ True,PlotRange→ All,FrameLabel→ {z, “w(z)”}]

Repeating the same procedure as before for various slopes of s we obtain Fig.5.7



C.1. Quintessence Models 92

C.1.3 Reproduction of Fig.5.8

In order to construct Fig.5.8 we begin setting the directory with the command SetDirectory
where our data are and in particular the txt file with the Gold Dataset. Next we will use the Do
command in order to pair our data with physical quantities and we construct the corresponding
Hubble free luminosity distance i.e Eq.(5.23) for a Universe with matter and dark energy.

SetDirectory[NotebookDirectory[]];SetDirectory[NotebookDirectory[]];SetDirectory[NotebookDirectory[]];

data = ReadList[“Union21.txt”, {Word,Number,Number,Number,Number}];data = ReadList[“Union21.txt”, {Word,Number,Number,Number,Number}];data = ReadList[“Union21.txt”, {Word,Number,Number,Number,Number}];

ndat = Length[data];ndat = Length[data];ndat = Length[data];

Do[zz[i] = data[[i, 2]], {i, 1, ndat}]Do[zz[i] = data[[i, 2]], {i, 1, ndat}]Do[zz[i] = data[[i, 2]], {i, 1, ndat}]

Do[ld[i] = data[[i, 3]], {i, 1, ndat}]Do[ld[i] = data[[i, 3]], {i, 1, ndat}]Do[ld[i] = data[[i, 3]], {i, 1, ndat}]

Do[sld[i] = data[[i, 4]], {i, 1, ndat}]Do[sld[i] = data[[i, 4]], {i, 1, ndat}]Do[sld[i] = data[[i, 4]], {i, 1, ndat}]

f [z , om ]:=1/Sqrt[om(1 + z)∧3 + (1− om)];f [z , om ]:=1/Sqrt[om(1 + z)∧3 + (1− om)];f [z , om ]:=1/Sqrt[om(1 + z)∧3 + (1− om)];

rr[zz ?NumericQ, om ?NumericQ]:=rr[zz ?NumericQ, om ?NumericQ]:=rr[zz ?NumericQ, om ?NumericQ]:=

NIntegrate[f [z, om], {z, 0, zz},MaxRecursion→ 20,AccuracyGoal→ 10];NIntegrate[f [z, om], {z, 0, zz},MaxRecursion→ 20,AccuracyGoal→ 10];NIntegrate[f [z, om], {z, 0, zz},MaxRecursion→ 20,AccuracyGoal→ 10];

Afterwards we minimize the χ2 function as it is described in the main part of my thesis and
insert Eq.(5.47) therefore calculating the χ2 function for the ΛCDM model

chi2fa[om ]:=Sum[(ld[i]− 5Log[10, rr[zz[i], om] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}];chi2fa[om ]:=Sum[(ld[i]− 5Log[10, rr[zz[i], om] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}];chi2fa[om ]:=Sum[(ld[i]− 5Log[10, rr[zz[i], om] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}];

chi2fb[om ]:=Sum[(ld[i]− 5Log[10, rr[zz[i], om] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}];chi2fb[om ]:=Sum[(ld[i]− 5Log[10, rr[zz[i], om] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}];chi2fb[om ]:=Sum[(ld[i]− 5Log[10, rr[zz[i], om] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}];

chi2fc = Sum[1/(sld[i]∧2), {i, 1, ndat}];chi2fc = Sum[1/(sld[i]∧2), {i, 1, ndat}];chi2fc = Sum[1/(sld[i]∧2), {i, 1, ndat}];

chi2fm[om ]:=chi2fa[om]− chi2fb[om]∧2/chi2fc + Log[chi2fc/(2Pi)];chi2fm[om ]:=chi2fa[om]− chi2fb[om]∧2/chi2fc + Log[chi2fc/(2Pi)];chi2fm[om ]:=chi2fa[om]− chi2fb[om]∧2/chi2fc + Log[chi2fc/(2Pi)];

chi2minimum = FindMinimum[chi2fm[om], {om, 0.25},PrecisionGoal→ 18];chi2minimum = FindMinimum[chi2fm[om], {om, 0.25},PrecisionGoal→ 18];chi2minimum = FindMinimum[chi2fm[om], {om, 0.25},PrecisionGoal→ 18];

chi2lcmd = chi2fm[0.277612];chi2lcmd = chi2fm[0.277612];chi2lcmd = chi2fm[0.277612];

Print ["x2
ΛCMD=", chi2lcmd]Print ["x2
ΛCMD=", chi2lcmd]Print ["x2
ΛCMD=", chi2lcmd]

x2
ΛCMD = 570.264

Now we are ready to obtain the χ2 function for various slopes of s. In this appendix we will
show the procedure only for s = 0.1.

aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];

aad = D[aa, t];aad = D[aa, t];aad = D[aa, t];

aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];

fid = D[fi, t];fid = D[fi, t];fid = D[fi, t];

fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];

ti = 0.000025; t0 = 2.25; f0 = −7; om0m = 0.3; ss = 0.1;ti = 0.000025; t0 = 2.25; f0 = −7; om0m = 0.3; ss = 0.1;ti = 0.000025; t0 = 2.25; f0 = −7; om0m = 0.3; ss = 0.1;
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eq1 = aadd/aa + fid∧2 + ssfi + om0m/(2aa∧3) == 0;eq1 = aadd/aa + fid∧2 + ssfi + om0m/(2aa∧3) == 0;eq1 = aadd/aa + fid∧2 + ssfi + om0m/(2aa∧3) == 0;

eq2 = fidd + 3 fid(aad/aa)− ss == 0;eq2 = fidd + 3 fid(aad/aa)− ss == 0;eq2 = fidd + 3 fid(aad/aa)− ss == 0;

condition1 = f [ti]==f0;condition1 = f [ti]==f0;condition1 = f [ti]==f0;

condition2 = f ′[ti]==0;condition2 = f ′[ti]==0;condition2 = f ′[ti]==0;

condition3 = a[ti] == (9om0m/4)∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0m/4)∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0m/4)∧(1/3) ti∧(2/3);

condition4 = a′[ti] == (2/3)(9om0m/4)∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0m/4)∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0m/4)∧(1/3) ti∧(−1/3);

solution = NDSolve[{eq1, eq2, condition1, condition2, condition3,solution = NDSolve[{eq1, eq2, condition1, condition2, condition3,solution = NDSolve[{eq1, eq2, condition1, condition2, condition3,

condition4}, {aa, fi}, {t, ti, t0},MaxSteps→ 100000000];condition4}, {aa, fi}, {t, ti, t0},MaxSteps→ 100000000];condition4}, {aa, fi}, {t, ti, t0},MaxSteps→ 100000000];

fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];

asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];

Plot[fsol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “φ(t)”},Axes→ False,PlotRange→ All];Plot[fsol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “φ(t)”},Axes→ False,PlotRange→ All];Plot[fsol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “φ(t)”},Axes→ False,PlotRange→ All];

Plot[asol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “α(t)”},Axes→ False,PlotRange→ All];Plot[asol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “α(t)”},Axes→ False,PlotRange→ All];Plot[asol, {t, ti, t0},Frame→ True,FrameLabel→ {t, “α(t)”},Axes→ False,PlotRange→ All];

vfinal[t1 ]:=fsol/.t->t1;vfinal[t1 ]:=fsol/.t->t1;vfinal[t1 ]:=fsol/.t->t1;

Plot[−ss ∗ vfinal[t], {t, ti, t0},Frame→ True,PlotRange→ All,FrameLabel→ {t, “V(φ(t))”}];Plot[−ss ∗ vfinal[t], {t, ti, t0},Frame→ True,PlotRange→ All,FrameLabel→ {t, “V(φ(t))”}];Plot[−ss ∗ vfinal[t], {t, ti, t0},Frame→ True,PlotRange→ All,FrameLabel→ {t, “V(φ(t))”}];

dfsol = D[fsol, t];dfsol = D[fsol, t];dfsol = D[fsol, t];

enf = 0.5dfsol∧2− ssfsol;enf = 0.5dfsol∧2− ssfsol;enf = 0.5dfsol∧2− ssfsol;

as[t1 ]:=asol/.t->t1;as[t1 ]:=asol/.t->t1;as[t1 ]:=asol/.t->t1;

tt = Part[FindRoot[as[t]==1, {t, 1},AccuracyGoal→ Infinity,tt = Part[FindRoot[as[t]==1, {t, 1},AccuracyGoal→ Infinity,tt = Part[FindRoot[as[t]==1, {t, 1},AccuracyGoal→ Infinity,

PrecisionGoal→ 8,MaxIterations→ 1000], 1, 2];PrecisionGoal→ 8,MaxIterations→ 1000], 1, 2];PrecisionGoal→ 8,MaxIterations→ 1000], 1, 2];

tas[a ?NumericQ]:=Part[FindRoot[Normal[as[t]] == a, {t, 1},AccuracyGoal→ Infinity,tas[a ?NumericQ]:=Part[FindRoot[Normal[as[t]] == a, {t, 1},AccuracyGoal→ Infinity,tas[a ?NumericQ]:=Part[FindRoot[Normal[as[t]] == a, {t, 1},AccuracyGoal→ Infinity,

PrecisionGoal→ 8,MaxIterations→ 1000], 1, 2];PrecisionGoal→ 8,MaxIterations→ 1000], 1, 2];PrecisionGoal→ 8,MaxIterations→ 1000], 1, 2];

hht[t1 ?NumericQ]:=D[asol, t]/asol/.t->t1;hht[t1 ?NumericQ]:=D[asol, t]/asol/.t->t1;hht[t1 ?NumericQ]:=D[asol, t]/asol/.t->t1;

hha[a ?NumericQ]:=hht[tas[a]];hha[a ?NumericQ]:=hht[tas[a]];hha[a ?NumericQ]:=hht[tas[a]];

hhz[z ?NumericQ]:=hha[1/(z + 1)];hhz[z ?NumericQ]:=hha[1/(z + 1)];hhz[z ?NumericQ]:=hha[1/(z + 1)];

enf = 0.5dfsol∧2− ssfsol;enf = 0.5dfsol∧2− ssfsol;enf = 0.5dfsol∧2− ssfsol;

ppf = 0.5dfsol∧2 + ssfsol;ppf = 0.5dfsol∧2 + ssfsol;ppf = 0.5dfsol∧2 + ssfsol;

wft[t1 ]:=ppf/enf/.t->t1;wft[t1 ]:=ppf/enf/.t->t1;wft[t1 ]:=ppf/enf/.t->t1;

wfa[a ]:=wft[tas[a]];wfa[a ]:=wft[tas[a]];wfa[a ]:=wft[tas[a]];

wfz[z ]:=wfa[1/(z + 1)];wfz[z ]:=wfa[1/(z + 1)];wfz[z ]:=wfa[1/(z + 1)];
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Clear[chi2fa, chi2fb, chi2fc, chi2fm]Clear[chi2fa, chi2fb, chi2fc, chi2fm]Clear[chi2fa, chi2fb, chi2fc, chi2fm]

f [z ]:=1/hhz[z];f [z ]:=1/hhz[z];f [z ]:=1/hhz[z];

rr[zz ?NumericQ]:=NIntegrate[f [z], {z, 0, zz}];rr[zz ?NumericQ]:=NIntegrate[f [z], {z, 0, zz}];rr[zz ?NumericQ]:=NIntegrate[f [z], {z, 0, zz}];

chi2fa = Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}];chi2fa = Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}];chi2fa = Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}];

chi2fb = Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}];chi2fb = Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}];chi2fb = Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}];

chi2fc = Sum[1/(sld[i]∧2), {i, 1, ndat}];chi2fc = Sum[1/(sld[i]∧2), {i, 1, ndat}];chi2fc = Sum[1/(sld[i]∧2), {i, 1, ndat}];

chi2fm = chi2fa− chi2fb∧2/chi2fc + Log[chi2fc/(2Pi)];chi2fm = chi2fa− chi2fb∧2/chi2fc + Log[chi2fc/(2Pi)];chi2fm = chi2fa− chi2fb∧2/chi2fc + Log[chi2fc/(2Pi)];

Print ["x2
s=0.1=", chi2fm]Print ["x2
s=0.1=", chi2fm]Print ["x2
s=0.1=", chi2fm]

chi2difference = chi2fm− chi2lcmd;chi2difference = chi2fm− chi2lcmd;chi2difference = chi2fm− chi2lcmd;

Print ["∆χ2
s=0.1=", chi2difference]Print ["∆χ2
s=0.1=", chi2difference]Print ["∆χ2
s=0.1=", chi2difference]

x2
s=0.1 = 571.603

∆χ2
s=0.1 = 1.33995

Changing the value for s we derive the differences of ∆χ′s and construct Fig.5.8. Following
the same procedure we are able to construct the corresponding Fig.5.9 for the Union 2.1 Dataset.

C.2 Scalar Tensor Quintessence Models

C.2.1 Reproduction of Fig.5.13 and Fig.5.14

For the reproduction of Fig.5.13 we will use the same procedure and commands as in Appendix
C.1. However for the Scalar Tensor Quintessence Model the system that we have to solve is
different. In particular the system that we have to solve numerically is Eq.(5.69)-Eq.(5.73). In
what follows s is referred to as ss, λ is denotes as l, F0 is ff0 and φi is referred to as fi

aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];

aad = D[aa, t];aad = D[aa, t];aad = D[aa, t];

aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];

fid = D[fi, t];fid = D[fi, t];fid = D[fi, t];

fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];

ff = 1− l ∗ fi;ff = 1− l ∗ fi;ff = 1− l ∗ fi;

om0m = 0.3;om0m = 0.3;om0m = 0.3;

h = aad/aa;h = aad/aa;h = aad/aa;

ss = 1; ti = 0.00001; t0 = 26.11658597437683; l = 0.2; ff0 = 1.74; fii = −2.36;ss = 1; ti = 0.00001; t0 = 26.11658597437683; l = 0.2; ff0 = 1.74; fii = −2.36;ss = 1; ti = 0.00001; t0 = 26.11658597437683; l = 0.2; ff0 = 1.74; fii = −2.36;

dv = ss;dv = ss;dv = ss;
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eq1 = aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)−−(1/(3ff))fid∧2+eq1 = aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)−−(1/(3ff))fid∧2+eq1 = aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)−−(1/(3ff))fid∧2+

+(1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;+(1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;+(1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;

eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;

condition1 = f [ti] == fii;condition1 = f [ti] == fii;condition1 = f [ti] == fii;

condition2 = f ′[ti] == 0;condition2 = f ′[ti] == 0;condition2 = f ′[ti] == 0;

condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);

condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);

solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi}, {t, ti, t0}];solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi}, {t, ti, t0}];solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi}, {t, ti, t0}];

asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];

fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];

dasol = D[asol, t];dasol = D[asol, t];dasol = D[asol, t];

ddasol = D[asol, {t, 2}];ddasol = D[asol, {t, 2}];ddasol = D[asol, {t, 2}];

Plot[fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “φ(t)”}]Plot[fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “φ(t)”}]Plot[fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “φ(t)”}]

Plot[1− l ∗ fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “F(t)”}]Plot[1− l ∗ fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “F(t)”}]Plot[1− l ∗ fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “F(t)”}]

Plot[asol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “a(t)”}]Plot[asol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “a(t)”}]Plot[asol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “a(t)”}]

Plot[Log[asol], {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “lna(t)”}]Plot[Log[asol], {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “lna(t)”}]Plot[Log[asol], {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “lna(t)”}]

For values above λcrit. the dynamics for the φ field and the scale factor one can reproduce the
Fig.5.13 and Fig.5.14

C.2.2 Reproduction of Fig.5.16

For the reproduction of Fig.5.16 all we have to do is obtain the λcrit. for every slope s. This
can be calculated easily based on the different behaviour of the scalar field φ. Let us then run
the following commands for s = 1.0

aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];

aad = D[aa, t];aad = D[aa, t];aad = D[aa, t];

aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];

fid = D[fi, t];fid = D[fi, t];fid = D[fi, t];

fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];

l = 0.1; fii = −6.3; ti = 0.00001; t0 = 76.27280353; ff0 = 1.70; ss = 0.5;l = 0.1; fii = −6.3; ti = 0.00001; t0 = 76.27280353; ff0 = 1.70; ss = 0.5;l = 0.1; fii = −6.3; ti = 0.00001; t0 = 76.27280353; ff0 = 1.70; ss = 0.5;

ff = 1− l ∗ fi;ff = 1− l ∗ fi;ff = 1− l ∗ fi;

om0m = 0.3;om0m = 0.3;om0m = 0.3;
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h = aad/aa;h = aad/aa;h = aad/aa;

dv = ss;dv = ss;dv = ss;

eq1 =eq1 =eq1 =

aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)− (1/(3ff))fid∧2 + (1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)− (1/(3ff))fid∧2 + (1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)− (1/(3ff))fid∧2 + (1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−

D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;

eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;

condition1 = f [ti] == fii;condition1 = f [ti] == fii;condition1 = f [ti] == fii;

condition2 = f ′[ti] == 0;condition2 = f ′[ti] == 0;condition2 = f ′[ti] == 0;

condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);

condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);

solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi},solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi},solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi},

{t, ti, t0},MaxSteps→ 10000000];{t, ti, t0},MaxSteps→ 10000000];{t, ti, t0},MaxSteps→ 10000000];

asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];

fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];

dasol = D[asol, t];dasol = D[asol, t];dasol = D[asol, t];

ddasol = D[asol, {t, 2}];ddasol = D[asol, {t, 2}];ddasol = D[asol, {t, 2}];

Plot[fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “φ(t)”}]Plot[fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “φ(t)”}]Plot[fsol, {t, ti, t0},PlotStyle→ Blue,Frame→ True,PlotRange→ All,FrameLabel→ {t, “φ(t)”}]

For these particular code the φ field behaves as follows

Figure C.1: Evolution of the scalar field for s = 1 and λ = 0.10 < 0.11 = λcrit

Increasing now the value of λ = 0.12 the behaviour of the field changes and reverts from the
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Big Crunch as it can be seen in the figure below

Figure C.2: Evolution of the scalar field for s = 1 and λ = 0.12 > 0.11 = λcrit

Therefore for s = 1 the λcrit ' 0.11. Repeating the same procedure for many slopes of s one
can derive Fig.5.16 with the use of the Show command.

C.2.3 Reproduction of Fig.5.22 and Fig.5.23

In this final subsection we will reproduce Fig.5.22 and Fig.5.23, i.e the 1σ and 2σ probability
contours for the linear potential. Unfortunately for this particular model there is no analytical
expression for the “χ2 function” thus we calculate χ2’s numerically following the same procedure
as in Appendix C.1.3. Here we are showing as an example the algorithm for s = 2.0 and λ = 0.3
for the Union2.1 Dataset

Clear[a, aa, aad, aadd, fi, fid, fidd, eq1, eq2, condition1, condition2, condition3, condition4, fsol,Clear[a, aa, aad, aadd, fi, fid, fidd, eq1, eq2, condition1, condition2, condition3, condition4, fsol,Clear[a, aa, aad, aadd, fi, fid, fidd, eq1, eq2, condition1, condition2, condition3, condition4, fsol,

asol, tas, f, rr, hht, hha, chi2fa, chi2fb, chi2fc]asol, tas, f, rr, hht, hha, chi2fa, chi2fb, chi2fc]asol, tas, f, rr, hht, hha, chi2fa, chi2fb, chi2fc]

aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];aa = a[t]; fi = f [t];

aad = D[aa, t];aad = D[aa, t];aad = D[aa, t];

aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];aadd = D[aa, {t, 2}];

fid = D[fi, t];fid = D[fi, t];fid = D[fi, t];

fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];fidd = D[fi, {t, 2}];

l = 0.3; fii = −0.58; ti = 0.001; t0 = 6.038484752612276; ff0 = 1.46; ss = 2.0;l = 0.3; fii = −0.58; ti = 0.001; t0 = 6.038484752612276; ff0 = 1.46; ss = 2.0;l = 0.3; fii = −0.58; ti = 0.001; t0 = 6.038484752612276; ff0 = 1.46; ss = 2.0;

ff = 1− l ∗ fi;ff = 1− l ∗ fi;ff = 1− l ∗ fi;

om0m = 0.3;om0m = 0.3;om0m = 0.3;

h = aad/aa;h = aad/aa;h = aad/aa;

dv = ss;dv = ss;dv = ss;
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eq1 =eq1 =eq1 =

aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)− (1/(3ff))fid∧2 + (1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)− (1/(3ff))fid∧2 + (1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−aadd/aa == −om0m ∗ ff0/(2aa∧3 ∗ ff)− (1/(3ff))fid∧2 + (1/(3ff)) ∗ V − h ∗D[ff, t]/(2ff)−

D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;D[ff, {t, 2}]/(2ff)/.V → −ss ∗ fi;

eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;eq2 = fidd + 3(aad/aa) ∗ fid− dv− 3 ∗D[ff, fi] ∗ (aadd/aa + aad∧2/aa∧2) == 0;

condition1 = f [ti] == fii;condition1 = f [ti] == fii;condition1 = f [ti] == fii;

condition2 = f ′[ti] == 0;condition2 = f ′[ti] == 0;condition2 = f ′[ti] == 0;

condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);condition3 = a[ti] == (9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(2/3);

condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);condition4 = a′[ti] == (2/3)(9om0mff0/(4(1− l ∗ fii)))∧(1/3) ti∧(−1/3);

solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi},solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi},solution = NDSolve[{eq1, eq2, condition1, condition2, condition3, condition4}, {aa, fi},

asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];asol = Part[Evaluate[a[t]/.solution], 1];

fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];fsol = Part[Evaluate[f [t]/.solution], 1];

dasol = D[asol, t];dasol = D[asol, t];dasol = D[asol, t];

ddasol = D[asol, {t, 2}];ddasol = D[asol, {t, 2}];ddasol = D[asol, {t, 2}];

as[t1 ]:=asol/.t->t1;as[t1 ]:=asol/.t->t1;as[t1 ]:=asol/.t->t1;

tt = Part[FindRoot[as[t]==1, {t, 0.1}], 1, 2];tt = Part[FindRoot[as[t]==1, {t, 0.1}], 1, 2];tt = Part[FindRoot[as[t]==1, {t, 0.1}], 1, 2];

tas[a ]:=Part[FindRoot[as[t] == a, {t, 0.1}], 1, 2];tas[a ]:=Part[FindRoot[as[t] == a, {t, 0.1}], 1, 2];tas[a ]:=Part[FindRoot[as[t] == a, {t, 0.1}], 1, 2];

hht[t1 ]:=D[asol, t]/asol/.t->t1;hht[t1 ]:=D[asol, t]/asol/.t->t1;hht[t1 ]:=D[asol, t]/asol/.t->t1;

hha[a ]:=hht[tas[a]];hha[a ]:=hht[tas[a]];hha[a ]:=hht[tas[a]];

hhz[z ]:=hha[1/(z + 1)];hhz[z ]:=hha[1/(z + 1)];hhz[z ]:=hha[1/(z + 1)];

dfsol = D[fsol, t];dfsol = D[fsol, t];dfsol = D[fsol, t];

ddfsol = D[fsol, {t, 2}];ddfsol = D[fsol, {t, 2}];ddfsol = D[fsol, {t, 2}];

dasol = D[asol, t];dasol = D[asol, t];dasol = D[asol, t];

Ht = dasol/asol;Ht = dasol/asol;Ht = dasol/asol;

dHt = D[Ht, t];dHt = D[Ht, t];dHt = D[Ht, t];

enf = (0.5dfsol∧2− ssfsol)/(3(1− l ∗ fsol)hht[t]∧2) + l ∗ dfsol/((1− l ∗ fsol)hht[t])/.t→ tt;enf = (0.5dfsol∧2− ssfsol)/(3(1− l ∗ fsol)hht[t]∧2) + l ∗ dfsol/((1− l ∗ fsol)hht[t])/.t→ tt;enf = (0.5dfsol∧2− ssfsol)/(3(1− l ∗ fsol)hht[t]∧2) + l ∗ dfsol/((1− l ∗ fsol)hht[t])/.t→ tt;

fff = (1− l ∗ fsol)/.t→ tt;fff = (1− l ∗ fsol)/.t→ tt;fff = (1− l ∗ fsol)/.t→ tt;

ppnew = dfsol∧2− l ∗ ddfsol + Ht ∗ l ∗ dfsol− 2 ∗ dHt ∗ (ff0− (1− l ∗ fsol));ppnew = dfsol∧2− l ∗ ddfsol + Ht ∗ l ∗ dfsol− 2 ∗ dHt ∗ (ff0− (1− l ∗ fsol));ppnew = dfsol∧2− l ∗ ddfsol + Ht ∗ l ∗ dfsol− 2 ∗ dHt ∗ (ff0− (1− l ∗ fsol));

rrnew = (0.5dfsol∧2− ssfsol)− 3 ∗ (Ht∧2) ∗ (1− l ∗ fsol− ff0) + 3 ∗ Ht ∗ l ∗ dfsol;rrnew = (0.5dfsol∧2− ssfsol)− 3 ∗ (Ht∧2) ∗ (1− l ∗ fsol− ff0) + 3 ∗ Ht ∗ l ∗ dfsol;rrnew = (0.5dfsol∧2− ssfsol)− 3 ∗ (Ht∧2) ∗ (1− l ∗ fsol− ff0) + 3 ∗ Ht ∗ l ∗ dfsol;

wwt = −1 + (ppnew/rrnew);wwt = −1 + (ppnew/rrnew);wwt = −1 + (ppnew/rrnew);
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wwt/.t→ t0;wwt/.t→ t0;wwt/.t→ t0;

f [z ]:=1/hhz[z]f [z ]:=1/hhz[z]f [z ]:=1/hhz[z]

ddz = 0.0001;ddz = 0.0001;ddz = 0.0001;

imax = 1200; zmax = 2; dz = zmax/imax;imax = 1200; zmax = 2; dz = zmax/imax;imax = 1200; zmax = 2; dz = zmax/imax;

ttable = Table[{0, 0}, {i, 1, imax}];ttable = Table[{0, 0}, {i, 1, imax}];ttable = Table[{0, 0}, {i, 1, imax}];

Do[ttable[[i]] = {idz, f [idz]}, {i, 1, imax}]Do[ttable[[i]] = {idz, f [idz]}, {i, 1, imax}]Do[ttable[[i]] = {idz, f [idz]}, {i, 1, imax}]

Plot[f [z], {z, 0, 2},Frame→ True,PlotStyle→ Red,PlotRange→ All];Plot[f [z], {z, 0, 2},Frame→ True,PlotStyle→ Red,PlotRange→ All];Plot[f [z], {z, 0, 2},Frame→ True,PlotStyle→ Red,PlotRange→ All];

ListPlot[ttable,PlotStyle→ {Thick,Blue,PointSize[0.008]},Frame→ True,FrameLabel→ {z, “w(z)”}];ListPlot[ttable,PlotStyle→ {Thick,Blue,PointSize[0.008]},Frame→ True,FrameLabel→ {z, “w(z)”}];ListPlot[ttable,PlotStyle→ {Thick,Blue,PointSize[0.008]},Frame→ True,FrameLabel→ {z, “w(z)”}];

f = Interpolation[ttable];f = Interpolation[ttable];f = Interpolation[ttable];

rr[zz ]:=NIntegrate[f [z], {z, 0, zz}];rr[zz ]:=NIntegrate[f [z], {z, 0, zz}];rr[zz ]:=NIntegrate[f [z], {z, 0, zz}];

chi2fa:=Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}]chi2fa:=Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}]chi2fa:=Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])∧2/(sld[i]∧2), {i, 1, ndat}]

chi2fb:=Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}]chi2fb:=Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}]chi2fb:=Sum[(ld[i]− 5Log[10, rr[zz[i]] ∗ (1 + zz[i])])/(sld[i]∧2), {i, 1, ndat}]

chi2fc:=Sum[1/(sld[i]∧2), {i, 1, ndat}]chi2fc:=Sum[1/(sld[i]∧2), {i, 1, ndat}]chi2fc:=Sum[1/(sld[i]∧2), {i, 1, ndat}]

chi2fm = chi2fa− chi2fb∧2/chi2fc + Log[chi2fc/(2Pi)];chi2fm = chi2fa− chi2fb∧2/chi2fc + Log[chi2fc/(2Pi)];chi2fm = chi2fa− chi2fb∧2/chi2fc + Log[chi2fc/(2Pi)];

chi2difference = chi2fm2030− chi2lcmd;chi2difference = chi2fm2030− chi2lcmd;chi2difference = chi2fm2030− chi2lcmd;

Print
[
"χ2

s=2.0,λ=0.30=", chi2fm
]

Print
[
"χ2

s=2.0,λ=0.30=", chi2fm
]

Print
[
"χ2

s=2.0,λ=0.30=", chi2fm
]

Print
[
"∆χ2

s=2.0,λ=0.30=", chi2difference
]

Print
[
"∆χ2

s=2.0,λ=0.30=", chi2difference
]

Print
[
"∆χ2

s=2.0,λ=0.30=", chi2difference
]

χ2
s=2.0,λ=0.30 = 570.269

∆χ2
s=2.0,λ=0.30 = 0.00506429

Now selecting various pairs of (s, λ) one is able to obtain every point from Fig.5.21. When
we have obtained all the values that we want to include in our contours we use the Interpolation
command as follows

h = Interpolation[{{{0.5, 0}, 571.759}, {{0.5, 0.05}, 571.808}, {{0.5, 0.10}, 571.996}, {{0.5, 0.15}, 571.239},h = Interpolation[{{{0.5, 0}, 571.759}, {{0.5, 0.05}, 571.808}, {{0.5, 0.10}, 571.996}, {{0.5, 0.15}, 571.239},h = Interpolation[{{{0.5, 0}, 571.759}, {{0.5, 0.05}, 571.808}, {{0.5, 0.10}, 571.996}, {{0.5, 0.15}, 571.239},

{{0.5, 0.2}, 571.442}, {{0.5, 0.22}, 571.302}, {{1.0, 0}, 571.954}, {{1, 0.05}, 571.456},{{0.5, 0.2}, 571.442}, {{0.5, 0.22}, 571.302}, {{1.0, 0}, 571.954}, {{1, 0.05}, 571.456},{{0.5, 0.2}, 571.442}, {{0.5, 0.22}, 571.302}, {{1.0, 0}, 571.954}, {{1, 0.05}, 571.456},

{{1, 0.1}, 571.219}, {{1, 0.15}, 571.054}, {{1, 0.2}, 570.872}, {{1., 0.25}, 570.788},{{1, 0.1}, 571.219}, {{1, 0.15}, 571.054}, {{1, 0.2}, 570.872}, {{1., 0.25}, 570.788},{{1, 0.1}, 571.219}, {{1, 0.15}, 571.054}, {{1, 0.2}, 570.872}, {{1., 0.25}, 570.788},

{{1., 0.3}, 570.953}, {{1, 0.35}, 571.050}, {{1., 0.4}, 571.069}, {{1, 0.42}, 571.303},{{1., 0.3}, 570.953}, {{1, 0.35}, 571.050}, {{1., 0.4}, 571.069}, {{1, 0.42}, 571.303},{{1., 0.3}, 570.953}, {{1, 0.35}, 571.050}, {{1., 0.4}, 571.069}, {{1, 0.42}, 571.303},

{{2, 0.15}, 571.801}, {{2, 0.2}, 570.728}, {{2, 0.25}, 570.379}, {{2, 0.3}, 570.269}, {{2, 0.35}, 570.276},{{2, 0.15}, 571.801}, {{2, 0.2}, 570.728}, {{2, 0.25}, 570.379}, {{2, 0.3}, 570.269}, {{2, 0.35}, 570.276},{{2, 0.15}, 571.801}, {{2, 0.2}, 570.728}, {{2, 0.25}, 570.379}, {{2, 0.3}, 570.269}, {{2, 0.35}, 570.276},

{{2, 0.4}, 570.276}, {{2, 0.5}, 570.297}, {{2, 0.55}, 570.329}, {{2, 0.6}, 570.318}, {{2, 0.65}, 570.367},{{2, 0.4}, 570.276}, {{2, 0.5}, 570.297}, {{2, 0.55}, 570.329}, {{2, 0.6}, 570.318}, {{2, 0.65}, 570.367},{{2, 0.4}, 570.276}, {{2, 0.5}, 570.297}, {{2, 0.55}, 570.329}, {{2, 0.6}, 570.318}, {{2, 0.65}, 570.367},

{{3, 0.2}, 572.387}, {{3, 0.25}, 570.874}, {{3, 0.3}, 570.398}, {{3, 0.35}, 570.390}, {{3, 0.4}, 570.756},{{3, 0.2}, 572.387}, {{3, 0.25}, 570.874}, {{3, 0.3}, 570.398}, {{3, 0.35}, 570.390}, {{3, 0.4}, 570.756},{{3, 0.2}, 572.387}, {{3, 0.25}, 570.874}, {{3, 0.3}, 570.398}, {{3, 0.35}, 570.390}, {{3, 0.4}, 570.756},

{{3, 0.45}, 571.124}, {{3, 0.5}, 571.471}, {{3, 0.55}, 571.552}, {{3, 0.6}, 571.572}, {{3, 0.65}, 571.571},{{3, 0.45}, 571.124}, {{3, 0.5}, 571.471}, {{3, 0.55}, 571.552}, {{3, 0.6}, 571.572}, {{3, 0.65}, 571.571},{{3, 0.45}, 571.124}, {{3, 0.5}, 571.471}, {{3, 0.55}, 571.552}, {{3, 0.6}, 571.572}, {{3, 0.65}, 571.571},
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{{3, 0.7}, 571.369}, {{3, 0.75}, 571.081}, {{3, 0.8}, 570.840}, {{3, 0.85}, 570.631}, {{3, 0.9}, 570.494},{{3, 0.7}, 571.369}, {{3, 0.75}, 571.081}, {{3, 0.8}, 570.840}, {{3, 0.85}, 570.631}, {{3, 0.9}, 570.494},{{3, 0.7}, 571.369}, {{3, 0.75}, 571.081}, {{3, 0.8}, 570.840}, {{3, 0.85}, 570.631}, {{3, 0.9}, 570.494},

{{3, 0.95}, 570.358}, {{3, 1.}, 570.329}, {{3, 1.05}, 570.372}}, InterpolationOrder→ 1];{{3, 0.95}, 570.358}, {{3, 1.}, 570.329}, {{3, 1.05}, 570.372}}, InterpolationOrder→ 1];{{3, 0.95}, 570.358}, {{3, 1.}, 570.329}, {{3, 1.05}, 570.372}}, InterpolationOrder→ 1];

Finally we use the ContourPlot and DensityPlot commands in order to derive Fig.5.22 as it
can be seen below

ContourPlot[h[s, l], {l, 0., 1.05}, {s, 0.5, 3},ContourShading→ None];ContourPlot[h[s, l], {l, 0., 1.05}, {s, 0.5, 3},ContourShading→ None];ContourPlot[h[s, l], {l, 0., 1.05}, {s, 0.5, 3},ContourShading→ None];

DensityPlot[h[s, l], {l, 0., 1.05}, {s, 0.5, 3},FrameLabel→ {“λ”, s},WorkingPrecision→ 5020,DensityPlot[h[s, l], {l, 0., 1.05}, {s, 0.5, 3},FrameLabel→ {“λ”, s},WorkingPrecision→ 5020,DensityPlot[h[s, l], {l, 0., 1.05}, {s, 0.5, 3},FrameLabel→ {“λ”, s},WorkingPrecision→ 5020,

PlotLegends→ Automatic]PlotLegends→ Automatic]PlotLegends→ Automatic]

All the figures that were constructed for the potential of the form V = s|φ|n are based on the
same algorithms and commands. In Ref.[70] one can find analytically all the constructed figures
along with the mathematica algorithms that have been used.
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La Rivista del Nuovo Cimento (1978-1999) 19, 1–114 (1996).

63S. Capozziello, R. de Ritis, and A. A. Marino, “Some aspects of the cosmological conformal
equivalence between ’Jordan frame’ and ’Einstein frame’”, Class. Quant. Grav. 14, 3243–3258
(1997).

64R. P. Feynman, Feynman lectures on gravitation, addison-wesley (Addison-Wesley, 1995).

65D. Iosifidis, Modified gravity and cosmology (master thesis) (2013).

66S. Nojiri and S. D. Odintsov, “Where new gravitational physics comes from: M Theory?”, Phys.
Lett. B576, 5–11 (2003).

67B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A. Starobinsky, “Reconstruction of a
scalar tensor theory of gravity in an accelerating universe”, Phys. Rev. Lett. 85, 2236 (2000).

68S. Tsujikawa, “Matter density perturbations and effective gravitational constant in modified
gravity models of dark energy”, Phys. Rev. D76, 023514 (2007).

69A. Lykkas and L. Perivolaropoulos, “Scalar-Tensor Quintessence with a linear potential: Avoid-
ing the Big Crunch cosmic doomsday”, Phys. Rev. D93, 043513 (2016).

70L. Kazantzidis, All of the numerical calculations in this thesis are included in the following
“Dropbox folder link” (June 2017).

71A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie”, Sitzungs-
berichte der Königlich Preußischen Akademie der Wissenschaften, 142–152 (1917).

72A. S. Eddington, “On the Instability of Einstein’s Spherical World”, MNRAS 9, 668–678 (1930).

73E.Hubble, “A relation between distance and radial velocity among extra-galactic nebulae”,
PNAS, Proceedings of the National Academy of Sciences 15, 168–173 (1929).

74D. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) three year results: impli-
cations for cosmology”, Astrophys.J.Suppl. 170, 377 (2007).

75G. Miknaitis, G. Pignata, A. Rest, W. Wood-Vasey, S. Blondin, et al., “The ESSENCE Super-
nova Survey: Survey Optimization, Observations, and Supernova Photometry”, Astrophys.J.
666, 674–693 (2007).

76S. Perlmutter et al., “Measurements of Omega and Lambda from 42 high redshift supernovae”,
Astrophys. J. 517, 565–586 (1999).

77A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a
cosmological constant”, Astron. J. 116, 1009–1038 (1998).

78J. L. Tonry et al., “Cosmological results from high-z supernovae”, Astrophys. J. 594, 1–24
(2003).

79R. Rakhi and K. Indulekha, “Dark Energy and Tracker Solution: A Review”, (2009).

80E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy”, Int. J. Mod. Phys.
D15, 1753–1936 (2006).

http://dx.doi.org/10.1080/14786445208647087
http://dx.doi.org/10.1007/BF02742992
http://dx.doi.org/10.1088/0264-9381/14/12/010
http://dx.doi.org/10.1088/0264-9381/14/12/010
http://dx.doi.org/10.1016/j.physletb.2003.09.091
http://dx.doi.org/10.1016/j.physletb.2003.09.091
http://dx.doi.org/10.1103/PhysRevLett.85.2236
http://dx.doi.org/10.1103/PhysRevD.76.023514
http://dx.doi.org/10.1103/PhysRevD.93.043513
https://www.dropbox.com/sh/fgocz0lq0jur1cx/AACsb2F805Q0rlRuLv0ho4zxa?dl=0
http://dx.doi.org/https://doi.org/10.1093/mnras/90.7.668
http://dx.doi.org/10.1073/pnas.15.3.168
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1086/519986
http://dx.doi.org/10.1086/519986
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/376865
http://dx.doi.org/10.1086/376865
http://dx.doi.org/10.1142/S021827180600942X
http://dx.doi.org/10.1142/S021827180600942X


References 105

81I. Zlatev, L.-M. Wang, and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cos-
mological constant”, Phys. Rev. Lett. 82, 896–899 (1999).

82T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified Gravity and Cosmology”,
Phys. Rept. 513, 1–189 (2012).

83M. H. Goroff and A. Sagnotti, “The Ultraviolet Behavior of Einstein Gravity”, Nucl. Phys.
B266, 709–736 (1986).

84G. ’t Hooft and M. J. G. Veltman, “One loop divergencies in the theory of gravitation”, Ann.
Inst. H. Poincare Phys. Theor. A20, 69–94 (1974).

85H. Gies, B. Knorr, S. Lippoldt, and F. Saueressig, “Gravitational Two-Loop Counterterm Is
Asymptotically Safe”, Phys. Rev. Lett. 116, 211302 (2016).

86L. J. Dixon, “Ultraviolet Behavior of N = 8 Supergravity”, Subnucl. Ser. 47, 1–39 (2011).

87E. Jennings, C. M. Baugh, R. E. Angulo, and S. Pascoli, “Simulations of quintessential cold
dark matter: beyond the cosmological constant”, mnras 401, 2181–2201 (2010).

88P. G. Ferreira and M. Joyce, “Cosmology with a primordial scaling field”, Phys. Rev. D 58,
023503 (1998).

89B. Ratra and P. J. E. Peebles, “Cosmological consequences of a rolling homogeneous scalar
field”, Phys. Rev. D 37, 3406–3427 (1988).

90C. Wetterich, “Cosmology and the fate of dilatation symmetry”, Nuclear Physics B 302, 668
–696 (1988).
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