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General Definitions and Motivation

SRAdS Metric

This spherically symmetric metric was first proposed by Grumiller and has
the form:

ds2 = f (r)dt2 − dr2

f (r)
− r2(dθ2 + sin2 θdφ2)

f (r) = 1− 2Gm

r
+ 2br − Λ

3
r2

(1)

where Λ is the cosmological constant and b is the Rindler acceleration term.
The Rindler term balances the mass and the anti de Sitter terms allowing for
stability.

It has been constrained by solar system observations such that
|b| < 3nm/sec2, it can lead to flat rotation curves and explains the Pioneer
anomaly.

It emerges generically as a vacuum solution of spherically symmetric
scalar-tensor theories, as well as a vacuum solution in the conformal Wey
gravity.

D. Grumiller, Phys.Rev.Lett 105 211303 (2010), S. Carloni et al, Phys.Rev.D 83 124024 (2011), L. Iorio,
Mon.Not.Roy.Astron.Soc. 419 2226-2232 (2012), P. D. Manheim et al, Astrophys.J. 342 635-638 (1989)
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General Definitions and Motivation

Thin Spherical Shells in GR

They are 2 + 1 boundary hypersurfaces with energy momentum tensor

S i
j ≡

∫ R+

R−
T i
j dr = diag(−σ, p, p) (2)

where R is the is the shell radius, r is the radial coordinate of the 3 + 1
dimensional spacetime, σ is the surface energy density and p is the surface
pressure on the shell hypersurface with equation of state p = p(σ).

The thin shell interpolates between an interior and an exterior spherically
symmetric metric. The exterior metric is related to the interior metric in the
context of the Israel junction conditions.

W. Israel, Nuovo Cim. B 44S10 1 (1966)
N. Sen, Annalen der Physik 378 365-396 (1924)
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General Definitions and Motivation

Thin Spherical Shells as a Black Hole Alternative (1/2)

Enter Gravastars!

Gravastars were originally proposed by Mazur and Mottola as a new final
state of the gravitational collapse of stars, a black hole alternative. Their
model consisted of a thin shell that separated spacetime into two pieces.
The interior region governed by the de Sitter metric and an exterior region
described by a Schwarzschild backgound.
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General Definitions and Motivation

Thin Spherical Shells as a Black Hole Alternative(2/2)

Internally, the gravastar is a compact body consisting of a Bose-Einstein
condensate. It is thermodynamically stable and is not susceptible to the
information paradox.

Externally, a gravastar appears similar to a black hole. It is visible by the
high-energy radiation it emits while consuming matter, and by the Hawking
radiation it creates. Therefore it would produce an identical observational
signature that extends to lensing if the shell isn’t transparent to radiation.

Turns out they are not so stable when they rotate rapidly.

P. O. Mazzur et al, Proc.Nat.Acad.Sci. 101 9545-9550 (2004)
M. Visser et al, Class.Quant.Grav. 21 1135-1152 (2004)
V. Cardoso et al, Phys.Rev. D 77.124044 (2007)
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General Definitions and Motivation

Motivation

It has been shown that this metric supports the existence and metastability of
spherical topological defects in the form of domain walls, which arise as solutions
to dynamical scalar field equations.

Can this be extended and generalized to fluid thin shells using the Israel
formalism?

G. Alestas et al, Phys.Rev. D 99 064026 (2019)
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General Definitions and Motivation

Questions to address

Are there static, stable fluid shell solutions in a SRAdS background
geometry?

If yes, what are the conditions for their stability given the equation of state
of the fluid shell?

What is the metric parameter range for shell stability and how does the
stability radius change as a function of these parameters?
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Thin Shells: Existence and Stability

Existence and Stability Analysis (1/4)

Consider a thin shell with radius R interpolating between an interior (-) and
an exterior (+) SRAdS metric,

ds2 = f±(r±)dt2 −
dr2
±

f±(r±)
− r2
±(dθ2 + sin2 θdφ2) (3)

where,

f±(r±) = 1− 2m±(r±)

r±
(4)

and

m±(r±) = m± − br2
± +

Λ

6
r3
±. (5)
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Thin Shells: Existence and Stability

Existence and Stability Analysis (2/4)

We impose two types of conditions:

The continuity of the metric on the shell (r− = r+ = R), which leads to

t− =
f+(R)

f−(R)
t+

dr−
dr+

=
f−(R)

f+(R)
.

(6)

And the Israel junction conditions expressed through a discontinuity of the
extrinsic curvature on the shell hypersurface Σ. For the extrinsic curvature
tensor of our metric,

Kij =
√
f±(r±)diag

(
1
2 f
′
±(r±)

f±(r±)
,

1

r±
,

1

r±

)
(7)
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Thin Shells: Existence and Stability

Existence and Stability Analysis (3/4)

the Israel conditions take the form,

σ = − 1

4πR

[[√
1− 2m±(R)/R + Ṙ2

]]

p =
1

8πR

1−m±(R)/R −m±(R)′ + Ṙ2 + RR̈√
1− 2m±(R)/R + Ṙ2

 (8)

for a dynamic shell.

Therefore the energy conservation equation on the shell is,

d

dτ
(σR2) + p

d

dτ
R2 = 0 (9)

identical to that of a particle moving in one dimension with zero energy.
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Thin Shells: Existence and Stability

Existence and Stability Analysis (4/4)

The potential of the shell for the case of the SRAdS metric is,

V (R) = 1− m− + m+

R
+ 2bR − ΛR2

3
− (m− −m+)2

16π2R4σ(R)2
− 4π2σ(R)2R2

(10)

And the conditions for the existence of a static, stable shell are,

V (R) = 0

V
′
(R) = 0

V
′′

(R) > 0

(11)
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Different Equations of State Vacuum Fluid Shell (p = −σ)

Case I: Vacuum Fluid Shell (1/5)

It is the simplest case of a stable spherical shell. Similar to the case of a
stable domain wall which has already been shown.

The energy conservation equation gives us,

σ(R) = σ0 = const. (12)

Therefore, the system conditions for existence and stability take the form,

V (R) = 1− m− + m+

R
+ 2bR − ΛR2

3
− (m− −m+)2

16π2R4σ2
0

− 4π2σ2
0R

2 = 0

∂V

∂r

∣∣∣
r=R

= 2b +
m− + m+

R2
− 2ΛR

3
+

(m− −m+)2

4π2R5σ2
0

− 8π2σ2
0R = 0

∂2V

∂r2

∣∣∣
r=R

= −2Λ

3
− 2(m− + m+)

R3
− 5(m− −m+)2

4π2R6σ2
0

− 8π2σ2
0 > 0.

(13)

George Alestas (University of Ioannina) Stable Spherical Fluid Shells September 27, 2020 13 / 24



Different Equations of State Vacuum Fluid Shell (p = −σ)

Case I: Vacuum Fluid Shell (1/5)

It is the simplest case of a stable spherical shell. Similar to the case of a
stable domain wall which has already been shown.

The energy conservation equation gives us,

σ(R) = σ0 = const. (12)

Therefore, the system conditions for existence and stability take the form,

V (R) = 1− m− + m+

R
+ 2bR − ΛR2

3
− (m− −m+)2

16π2R4σ2
0

− 4π2σ2
0R

2 = 0

∂V

∂r

∣∣∣
r=R

= 2b +
m− + m+

R2
− 2ΛR

3
+

(m− −m+)2

4π2R5σ2
0

− 8π2σ2
0R = 0

∂2V

∂r2

∣∣∣
r=R

= −2Λ

3
− 2(m− + m+)

R3
− 5(m− −m+)2

4π2R6σ2
0

− 8π2σ2
0 > 0.

(13)

George Alestas (University of Ioannina) Stable Spherical Fluid Shells September 27, 2020 13 / 24



Different Equations of State Vacuum Fluid Shell (p = −σ)

Case I: Vacuum Fluid Shell (1/5)

It is the simplest case of a stable spherical shell. Similar to the case of a
stable domain wall which has already been shown.

The energy conservation equation gives us,

σ(R) = σ0 = const. (12)

Therefore, the system conditions for existence and stability take the form,

V (R) = 1− m− + m+

R
+ 2bR − ΛR2

3
− (m− −m+)2

16π2R4σ2
0

− 4π2σ2
0R

2 = 0

∂V

∂r

∣∣∣
r=R

= 2b +
m− + m+

R2
− 2ΛR

3
+

(m− −m+)2

4π2R5σ2
0

− 8π2σ2
0R = 0

∂2V

∂r2

∣∣∣
r=R

= −2Λ

3
− 2(m− + m+)

R3
− 5(m− −m+)2

4π2R6σ2
0

− 8π2σ2
0 > 0.

(13)

George Alestas (University of Ioannina) Stable Spherical Fluid Shells September 27, 2020 13 / 24



Different Equations of State Vacuum Fluid Shell (p = −σ)

Case I: Vacuum Fluid Shell (2/5)

The solution of this system is,

Λ(R, σ0) =
15(m− −m+)2

16π2R6σ2
0

+
6(m− + m+)− 3R

R3
− 12π2σ2

0 (14)

b(R, σ0) =
3(m− −m+)2 + 8π2[3(m− + m+)− 2R]R3σ2

0

16π2σ2
0R

5
(15)

R > 3(m− + m+) ≡ Rmin (16)

σ0 ≡

√
15
√
− (m−−m+)2

R3(3m−+3m+−R)

4π
+ ∆σ >

√
15
√
− (m−−m+)2

R3(3m−+3m+−R)

4π
≡ σ0min

(17)
where ∆σ allows for small perturbations on the surface density, higher than
that of its minimum value σ0min.
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Different Equations of State Vacuum Fluid Shell (p = −σ)

Case I: Vacuum Fluid Shell (3/5)

Due to the lower limits of R and σ we derive the boundaries of the stability (Λ, b)
parameter space:

bmin → −
1

6(m+ + m−)
,Λmax → −12π2σ2

0 (18)

These boundaries are demonstrated for (p = −σ) in the figure below,

b

m-=1, m+=1.05

bmin=-
1

6 (m- + m+)

Λmax=-12 π
2 σ0

2

Δσ=10-2
Δσ=2.2 x 10-2

σ0 min

Rmin=3 (m-+m+)

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

m-=1, m+=1.5

Δbmin

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

Λ
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Different Equations of State Vacuum Fluid Shell (p = −σ)

Case I: Vacuum Fluid Shell (4/5)

If we plot the potential for the parameter values that correspond to each of the colored
points of the previous plot we see that the only viable solutions exist inside the stability
region. This is shown in the figure below,

Δσ=2.2 x 10-2

Δσ=10-2

Δσ=10-3

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

R-Rmin

V
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Different Equations of State Vacuum Fluid Shell (p = −σ)

Case I: Vacuum Fluid Shell (5/5)

These results are also verified by performing a Monte-Carlo computational process
for N = 5× 104 random points as shown below,
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Different Equations of State Stiff Matter Fluid Shell (p = σ)

Case II: Stiff Matter Fluid Shell (1/3)

The equation of conservation of energy takes the form,

σ(R) = σ0R
−4 (19)

And the system conditions are,

V (R) = 1− m− + m+

R
+ 2bR − ΛR2

3
− (m− −m+)2R4

16π2σ2
0

− 4π2σ2
0

R6
= 0

∂V

∂r

∣∣∣
r=R

= 2b +
m− + m+

R2
− 2ΛR

3
− (m− −m+)2R3

4π2σ2
0

+
24π2σ2

0

R7
= 0

∂2V

∂r2

∣∣∣
r=R

= −2Λ

3
− 2(m− + m+)

R3
− 3(m− −m+)2R2

4π2σ2
0

− 168π2σ2
0

R8
> 0

(20)
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Different Equations of State Stiff Matter Fluid Shell (p = σ)

Case II: Stiff Matter Fluid Shell (2/3)

With solutions,

Λ(R, σ0) = −9(m− −m+)2R2

16π2σ2
0

+
6(m+ + m−)− 3R

R3
+

84π2σ2
0

R8
(21)

b(R, σ0) = − (m− −m+)2R3

16π2σ2
0

+
3(m− + m+)− 2R

2R2
+

16π2σ2
0

R7
(22)

And constraints,

−4π
√
σ2

0(R6 − 6m+R5 − 100π2σ2
0) <

3[(m− −m+)R5 + 8π2σ2
0]√

3
(23)

3[(m− −m+)R5 + 8π2σ2
0]√

3
< 4π

√
σ2

0(R6 − 6m+R5 − 100π2σ2
0) (24)

R6 > 6m+R
5 + 100π2σ2

0 (25)
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Case II: Stiff Matter Fluid Shell (2/3)

With solutions,

Λ(R, σ0) = −9(m− −m+)2R2

16π2σ2
0

+
6(m+ + m−)− 3R

R3
+

84π2σ2
0

R8
(21)

b(R, σ0) = − (m− −m+)2R3

16π2σ2
0

+
3(m− + m+)− 2R

2R2
+

16π2σ2
0

R7
(22)

And constraints,
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σ2
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0]√
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Different Equations of State Stiff Matter Fluid Shell (p = σ)

Case II: Stiff Matter Fluid Shell (3/3)

Performing the same Monte-Carlo computational process yields the following
narrow stability region,
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Different Equations of State Pressureless Dust Fluid Shell (p = 0)

Case II: Dust Fluid Shell (1/2)

Lastly, for a pressureless dust fluid shell the conservation of energy gives us,

σ(R) = σ0R
−2 (26)

With solutions to the system conditions for existence and stability,

Λ(R, σ0) =
3(m− −m+)2

16π2R2σ2
0

+
6(m− + m+)− 3R

R3
+

36π2σ2
0

R4
(27)

b(R, σ0) =
(m− −m+)2

16π2Rσ2
0

+
3(m− + m+)− 2R

2R2
+

8π2σ2
0

R3
(28)
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Different Equations of State Pressureless Dust Fluid Shell (p = 0)

Case II: Dust Fluid Shell (2/2)

The Monte-Carlo map of the dust matter shell stability region with m− = 1 and
m+ = 1.5,
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Summary and Conclusions

Summary

We have demonstrated the existence of static, stable spherically symmetric
thin fluid shells in a Schwarzschild-Rindler-anti-de Sitter (SRAdS) metric by
finding the analytic conditions for stability and the corresponding range of
values of metric parameters that admit stable fluid shells for different forms
of fluid equation of state.

These shells have similarities with the well known gravastar shell structures.

In our shell structures the interior de Sitter term of the gravastars is replaced
by a combination of Rindler-anti-de Sitter terms present in a continuous
form (same values both in the interior and in the exterior of the shell).
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Summary and Conclusions

Looking Ahead

The investigation of observational effects of such shell structures. For
example signatures of such SRAdS shell structures in typical lensing patterns
could be identified and compared to observed lensing patterns around black
holes.

The investigation of non-spherical junctions and shells. An interesting
problem would be the study of joining rotating spacetimes in the presence of
the cosmological constant.

The investigation of alternative forms of metrics that may admit stable shell
solutions.

And the investigation of the dynamical evolution of the shell in the context
of spherical symmetry and beyond.
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Summary and Conclusions

Thank you for listening!!
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Summary and Conclusions

Guest Stars!
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