Hubble Tension

or

a Late Fundamental Physics Transition

Leandros Perivolaropoulos

Department of Physics, University of Ioannina, Greece

Download from: http://leandros.physics.uoi.gr/talks2021/transition-hubble-tension-cepheids1.pdf

Structure of talk

- 1. The Hubble tension and the M tension
- 2. The transition approach to the Hubble tension
- 3. Searching for a transition in the Cepheid data
- 4. Tully Fisher data and solar system history
- 5. Theoretical models: Late false vacuum decay
- 6. Conclusions

The Hubble tension

Measuring H₀–H(z) with standard candles: late time calibrators

fit with kinematic expansion (z < 0.1)Fit SnIa Standard Candles for H_0 , z<0.1: Degeneracy between M (measured at z < 0.01) relative distance indicators (eg Cepheids) and H_0 (fit at z > 0.01). Fit for H(z) and cosmological parameters (Ω_{0m}) z_{max} ~2. Parametrize H(z): $H(z)^2 = H_0^2 \left[\Omega_{0m} (1+z)^3 + (1-\Omega_{0m}) \right]$ $m_{th}(\Omega_{0m},\mathcal{M}) = 5 \log_{10} D_L(z;\Omega_{0m}) + \mathcal{M}(M,H_0)$ $\text{Minimize:} \quad \chi^2(\mathcal{M}, \Omega_{0m}) = \sum_i \left[\frac{m_{obs,i} - m_{th}(z_i; \Omega_{0m}, \mathcal{M})}{\sigma_i^2} \right] \quad D_L(z, \Omega_{0m}) = c(1+z) \int_0^z \frac{dz'}{\left[\Omega_{0m}(1+z')^3 + (1-\Omega_{0m})\right]^{1/2}}$ $\mathcal{M} = M + 5log\frac{c/H_0}{Mpc} + 25$

H₀ tension or M tension?

H₀ measurement using sound horizon standard ruler (inverse distance ladder):

Assumptions: P18ACDM E(z), Standard expansion before z_{rec}

Here
$$\theta_s = \frac{r_s}{D_A(z)} = \frac{H_0 r_s}{\int_0^z \frac{dz}{E(z)}}$$
 $r_s = \int_0^{t_d} c_s dt/a = \int_0^{a_d} c_s \frac{da}{a^2 H(a)}$
 $r_s = \int_0^{t_d} c_s dt/a = \int_0^{a_d} c_s \frac{da}{a^2 H(a)}$
 $M = M + 5log \frac{c/H_0}{Mpc} + 25$ $M_{z>0.01} = 23.80 \pm 0.01$
 $M = M + 5log \frac{c/H_0}{Mpc} + 25$ $M_{z>0.01} = 23.80 \pm 0.01$
 $M = M + 5log \frac{c/H_0}{Mpc} + 25$ $M_{z>0.01} = -19.244 \pm 0.037$

H₀ measurement using distance ladder:

M depends on G_{eff} .

$$\mathcal{M}_{z>0.01} = 23.80 \pm 0.01$$

$$M = M + 5log \frac{c/H_0}{Mpc} + 25$$

$$H_0^{R20} = 73.2 \pm 1.3 \text{ km s}^{-1} \text{Mpc}^{-1} > H_0^{P18} = 67.36 \pm 0.54 \text{ km s}^{-1} \text{Mpc}^{-1}$$

$$M_{z>0.01} = M_{z<0.01}^{R20}$$

$$G_{\text{eff}}(z < 0.01) = G_{\text{eff}}(z > 0.01)$$

$$Assumption: G_{eff}(z<0.01) = G_{eff}(z>0.01)$$

The M transition hypothesis

A fundamental physics transition induces a transition of M (absolute magnitude or luminosity) at z<0.01.

Resolves M tension and Hubble tension.

Can potentially also resolve growth tension if the transition is connected with weaker gravity at $z > z_{\pm}$

The Hubble Crisis Approaches

Z

The Hubble Crisis Approaches

The M problem of H(z) deformations

 $m(z_i) = M - 5\log_{10}\left[H_0 \cdot \text{Mpc}/c\right] + 5\log_{10}(D_L(z_i)) + 25 \implies M_i = m(z_i) + 5\log_{10}\left[H_0^{R19} \cdot \text{Mpc}/c\right] - 5\log_{10}(D_L(z_i)) - 25$

The growth problem of H(z) deformations

Published in: Phys.Rev.D 101 (2020) 12, 123516 • e-Print: 2004.08363 [astro-ph.CO]

A 10% transition of G_{eff} is required for the reproduction of the required $\Delta M \sim 0.2$ for a pure Planck/ ΛCDM background.

A rapid transition of $G_{\rm eff}$ at $z_t\simeq 0.01$ as a solution of the Hubble and growth tensions Valerio Marra, Leandros Perivolaropoulos (Feb 11, 2021) e-Print: 2102.06012 [astro-ph.CO]

0.90 P18 ACDM likelihood contours 0.85 € 0.80 0.75 0.70 fox Likelihood Contours for P18 ACDM 0.65 0.95 0.90 18 ACDM likelihood contours 0.85 € 0.80 0.75 for Likelihood Contours for $\Delta \mu_G = -0.12$ 0.70 0.65 0.95 0.90 w=-1.2 likelihood contours 0.85 £ 0.80 0.75 0.70 Contours for w = -1.20.2 0.4 0.5 0.6 Ω_{0}

The reduced value of G_{eff} leads to a higher σ_8 value thus resolving the growth tension

X² problem is resolved. Growth tension resolved. M problem resolved

SnIa luminosities in the context of a Planck/ACDM background

Main Questions

Are there hints for a gravitational fundamental physics transition is astrophysical data on scales less than 40Mpc ($z_t < 0.01$)?

Are there theoretical models that naturally and generically predict this type of transition?

Cepheid Calibrators

Stars more massive than the Sun enter the instability strip and become variable suffering instabilities that cause them to pulsate in size and vary in luminosity.

Cepheid variable stars: Good standard candles: high luminosity up to 40,000 times more luminous than the Sun obtained from a Period-Luminosity Relation.

Cepheid Period-Magnitude relation:

$$m_H - R_H E(V - I) = \mu + M_H + b_H [P] + Z_H [M/H]$$

$$\downarrow^{E(V - I) \rightarrow V - I}$$

Wesenheit

$$m_{H}^{W} \equiv m_{H} - R_{W}(V - I) = \mu + M_{H}^{W} + b_{W}[P] + Z_{W}[M/H] + M_{H}^{W} + M$$

$$E(V - I) \equiv A_V - A_I = (V - I) - (V - I)_0$$
$$[P] \equiv \log P - 1$$
$$[M/H] \equiv \log(M/H) - \log(M/H)_{\odot} = \Delta \log(M/H)$$

Generalized Approach I: Individual Galaxy Parameters

 $R_{W,LMC}$ $R_{W,MW}$

 $R_{W,1}$

Allow different parameter variations: Search for Transition

I. Repeat previous study for consistency

3σ indication for a transition at $10Mpc < D_c < 20Mpc$

Hubble tension or a transition of the Cepheid Snla calibrator parameters?

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Sep 9, 2021) e-Print: 2109.04406 [astro-ph.CO]

Allow different parameter variations: Search for Transition

II. Allow for variation of absolute magnitude in individual galaxies

3σ indication for a transition at $10Mpc < D_c < 20Mpc$ with $\Delta M \sim 0.15$

Hubble tension or a transition of the Cepheid Snla calibrator parameters? Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Sep 9, 2021)

e-Print: 2109.04406 [astro-ph.CO]

R_W Transition Model: Single new parameter

$$AIC = -2ln\mathcal{L}_{max} + 2M = \chi^2_{min} + 2M$$

 $BIC = -2ln\mathcal{L}_{max} + MlnN = \chi^2_{min} + MlnN$

e-Print: 2109.04406 [astro-ph.CO]

M_w Transition Model

Model	Best Fit Parameters (with 1σ ranges)	Model Selection	Intrinsic scatter	of LMC Cepheids
	$\sigma_{LMC} = 0.08 \ (\sigma_{LMC} = 0 \)$	Criteria	$\sigma_{LMC} = 0$	$\sigma_{LMC} = 0.08$
Base-SH0ES	$R_W = 0.386$ (fixed)	χ^2_{min}	1767.48	1644.79
Global R _W	$M_H^W = -5.958 \pm 0.028$	χ^2_{red}	1.089	1.014
Global M_{H}^{W}	$M_B = -19.251 \pm 0.057$	AIC	1823.48	1700.79
N = 1650	$(M_B = -19.261 \pm 0.057)$	AAIC	7.65 (0)	17.97 (0)
M = 28	$H_0 = 72.86 \pm 1.95$ $H_0 = 73.50 \pm 1.96$	BIC	1974 92	1852 23
dof = 1622	$(H_0 = 7253 \pm 1.93, H_0 = 73.17 \pm 1.94)$	ARIC	2 25 (0)	12 57 (0)
Base	$P_{\rm eff} = 0.200 \pm 0.021$	2	1750.47	1624 82
Clobal D	$MW = 5.862 \pm 0.021$	Xmin 2	1094	1.002
Global RW	$M_H = -3.802 \pm 0.028$	Ared	1.004	1.002
Global M _H	$M_{\rm B} = -19.225 \pm 0.057$	AIC	1815.83	1682.82
N = 1650	$(M_B = -19.246 \pm 0.054)$	AAIC	0 (-7.65)	0 (-17.97)
M = 29	$H_0 = 73.73 \pm 1.96, H_0 = 74.38 \pm 1.97$	BIC	1972.67	1839.66
dof = 1621	$(H_0 = 73.03 \pm 1.86, H_0 = 73.67 \pm 1.86)$	ΔBIC	0 (-2.25)	0 (-12.57)
	$R_{W,i}$ red points in Fig. 3			
I	$R_W^{\leq} = 0.388 \pm 0.045 \text{ (using DSS)}$	χ^2_{min}	1676.76	1564.06
Individual Rw	$R_W^> = 0.206 \pm 0.033 \text{ (using DSS)}$	χ^2_{red}	1.049	0.978
Global M_H^W	$M_{H}^{W} = -5.958 \pm 0.028$	AIC	1778.76	1666.06
N = 1650	$M_{B} = -19.43 \pm 0.056$	ΔAIC	-37.07(-44.72)	-16.76(-34.73)
M = 51	$(M_B = -19.491 \pm 0.056)$	BIC	2054.59	1941.9
dof = 1599	$H_0 = 67.11 \pm 1.76, H_0 = 67.69 \pm 1.77$	ΔBIC	81.92 (79.67)	102.24 (89.74)
	$(H_0 = 65.24 \pm 1.71, H_0 = 65.81 \pm 1.72)$		01102 (10101)	to and a (contra)
	Bw = 0.386 (fixed)			
п	M ^W points in Fig. 6	2	1732.05	1611.04
	$M_{H,i}$ points in Fig. 6	Xmin 2	1/02/00	1011.04
Global RW	$M_{H^{+}} = -5.974 \pm 0.042$ (using DSS)	Xend	1.083	1.007
Individual M_{H}^{*}	$M_H^{(1)} = -6.126 \pm 0.036 \text{ (using DSS)}$	AIC	1832.05	1711.04
N = 1650	$M_{ m B} = -19.394 \pm 0.057$	ΔAIC	16.22(8.57)	28.22 (10.25)
M = 50	$(M_B = -19.404 \pm 0.055)$	BIC	2102.48	1981.47
dof = 1600	$H_0 = 68.22 \pm 1.82, H_0 = 68.82 \pm 1.83$	ΔBIC	129.81 (127.56)	141.81(129.24)
14877 - 14 Constanting	$(H_0 = 67.90 \pm 1.75, H_0 = 68.50 \pm 1.76)$			C
	$R_W = 0.310 \pm 0.021$	0.00		
III	$M_{H,i}^W$ points in Fig. 11	χ^2_{min}	1726.7	1592.09
Global Rw	$M_{\mu}^{W,<} = -5.904 \pm 0.042 \text{ (using DSS)}$	X ²	1.079	0.996
Individual MW	$M^{W,<} = -6.002 \pm 0.035$ (using DSS)	AIC	1828 7	1694.09
N = 1650	$M_{H} = -10.052 \pm 0.055$ (using 1555)	AAIC	12 87 (5 22)	11.27 (-6.7)
M = 1000	$(M_{\rm H} = -10.423 \pm 0.057)$	BIC	2104 52	1060.02
M = 51 $d_{2}f = 1500$	$(M_B = -19.424 \pm 0.000)$	ABIC	191 96 (190 61)	1909.95
aof = 1099	$H_0 = 07.17 \pm 1.79, H_0 = 07.70 \pm 1.80$	ABIC	151.00 (123.01)	130.21 (111.1)
117	$(H_0 = 07.28 \pm 1.75, H_0 = 07.87 \pm 1.76)$		171110	1011.07
IV	$R_{\tilde{W}} = 0.325 \pm 0.018$	Xmin	1744.19	1611.65
I wo universal R_W	$R_{W} = 0.155 \pm 0.054$	Xred	1.077	0.995
Global $M_H^{\prime\prime}$	$M_H^W = -5.885 \pm 0.028$	AIC	1804.19	1671.46
N = 1650	${f M_B}=-19.399\pm 0.057$	ΔAIC	-13.34(-18.99)	-11.36(-29.33)
M = 30	$(M_B = -19.447 \pm 0.054)$	BIC	1966.44	1833.91
dof = 1620	$H_0 = 68.06 \pm 1.80, H_0 = 68.66 \pm 1.81$	ΔBIC	-6.23(-8.48)	-5.75 (-18.32)
	$(H_0 = 66.59 \pm 1.66, H_0 = 67.17 \pm 1.67)$		A 2010 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
V	$R_W = 0.308 \pm 0.021$	χ^2_{min}	1757.15	1621.98
Global Rw	$M_{\mu}^{W,<} = -5.863 \pm 0.024$	X2	1.085	1.001
wo universal MW	$M^{W,<} = -6.024 \pm 0.062$	AIC	1817.15	1681.98
N = 1650	$M_{\rm P} = -19.361 \pm 0.057$	AAIC	1 32 (-6 33)	-0.84 (-18.81)
M = 20	$(M_{\rm e} = -10.301 \pm 0.057)$	RIC	1979 41	1844 22
daf = 1600	$H_{-} = 60.27 \pm 1.82$ $H_{-} = 60.88 \pm 1.82$	ARIC	6 74 (4 40)	4.57 (8 0)
aby = 1020	$H_0 = 00.27 \pm 1.02, H_0 = 00.00 \pm 1.83$	ABIC	0.74 (4.49)	4.07 (-8.0)
	$(n_0 = 05.00 \pm 1.81, n_0 = 05.00 \pm 1.82)$			
	$R_{W} = 0.329 \pm 0.018$		10000	1010 00
VI	$R_{W} = 0.151 \pm 0.053$	Xmin	1743.26	1612.09
Γ wo universal R_W	$M_{U}^{W,<} = -5.891 \pm 0.024$	Xred	1.077	0.996
f wo universal M_H^W	$M_{H}^{W,>} = -5.900 \pm 0.063$	AIC	1805.26	1674.09
N = 1650	$M_{B} = -19.413 \pm 0.052$	ΔAIC	-10.57(-18.22)	-8.73 (-26.7)
M = 31	$(M_B = -19.379 \pm 0.056)$	BIC	1972.93	1841.75
dof = 1619	$H_0 = 67.62 \pm 1.64, H_0 = 68.22 \pm 1.65$	ΔBIC	0.26(-1.99)	2.09 (-10.48)
	$(H_0 = 68.70 \pm 1.81, H_0 = 69.30 \pm 1.81)$			Contract Contraction

Model Selection

Hubble tension or a transition of the Cepheid Snla calibrator parameters?

Leandros Perivolaropoulos (Ioannina U.), Foteini Skara (Ioannina U.) (Sep 9, 2021) e-Print: 2109.04406 [astro-ph.CO]

- And - And

Model Comparison: Resolution of the M tension

In the context of transition models the M tension is not present.

Model Comparison: Resolution of the H₀ tension

In the context of transition models the Hubble tension is not present.

Tully-Fisher Data

Tully-Fisher relation: Baryonic mass of galaxies proportional to power (s~4) of rotation velocity $S \equiv M/R^2$ $v^2 = G_{\text{eff}}M/R \implies v^4 = (G_{\text{eff}}M/R)^2 \sim M S G_{\text{eff}}^2 \longrightarrow M_B = A_B v_{rot}^s \qquad A_B \sim G^{-2}S^{-1}$

Q: Is there a hint for a transition of the best fit value of A_B at some $z_t < 0.01$ (D<40Mpc)?

Tully-Fisher dataset: Updated SPARC database (Lelli et al. 2019,2016), 118 (D,M_B,v_{rot}) datapoints

Split in two subsets: Σ_1 : D> D_c, Σ_2 : D<D_c. Find σ -distance between the best fit parameters of each subset.

 $log M_B = s log v_{rot} + log A_B \equiv s y + b$

Monte Carlo Analysis

Tully-Fisher Data: Hints for transition

Split in two subsets: Σ_1 : D>D_c, Σ_2 : D<D_c. Find σ -between the best fit parameters of each subset.

Speculation: Extinction of Dinosaurs

The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the past 3 Gyr. Different lines of evidence, however, suggest that the impact flux from kilometre-sized bodies increased by at least a factor of two over the long-term average during the past \sim 100 Myr. Here we argue that this apparent surge was triggered by the catastrophic disruption of the

Perturbed Comets that Hit the Solar System

Theoretical Model: Scalar Tensor Theory

$\text{Scalar Tensor Transition:} \qquad S = \int d^4x \sqrt{|g|} \left[\frac{1}{2} \xi \varphi^2 R - \frac{1}{2} (\partial \varphi)^2 - V(\varphi) + \mathcal{L}_m \right], \qquad 8\pi G_N = \xi^{-1} v^{-2}$

v: potential minimum

$$v = \frac{1}{\sqrt{8\pi G_N}} = M_{\rm Pl} \sim 10^{19} {\rm GeV},$$
 Cosmologic

Cosmological Constant: $\Lambda = V(v)$

Generic Distance Scale

Published in: Phys.Rev.D 90 (2014) 6, 063009 • e-Print: 1401.1923 [astro-ph.CO]

Conclusion

- And Charles

Late time H(z) deformation approaches to the Hubble tension suffer from 3 problems: the χ^2 problem, the growth tension worsening and the M problem.

These problems are avoided if the H(z) deformation is replaced by a sudden diming of the SnIa intrinsic luminosity occurring less than 150 million years ago ($z_t < 0.01$).

Such a diming may be due to a sudden increase of the strength G_{eff} of gravitational interactions by about 10% at $z_t < 0.01$. This is a viable and testable conjecture.

There are hints for such a transition in recent Cepheid and Tully-Fisher data at z~0.005 (R~15-20Mpc) which probe the dynamics of galaxies at low z.

The favored transition distance scale (15Mpc) is consistent with the generic prediction of false vacuum decay models where the true vacuum has a similar energy scale as the observed cosmological constant scale (0.002eV).