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The Standard Cosmological Model - ΛCDM

The basic assumptions of this model are

I The validity of General Relativity (GR).

I Homogeneity and Isotropy.
I Flatness of spacetime.
I A primitive phase of cosmic inflation (a period of rapid accelerated

expansion) in order to address the horizon and flatness problems.
I The existence of Cold Dark Matter (CDM).
I The existence of the cosmological constant (Λ). The cosmological

constant drives the observed accelerated expansion of the Universe.

ΛCDM remains until now the simplest model that is consistent with a wide
range of experiments/observations from millimetre scales up to galactic
scales and beyond.

However, despite its simplicity, consistency with the cosmological data and
accurately predicting a variety of different phenomena, ΛCDM faces a
number of challenges both at the theoretical and the observational level.
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Theoretical Challenges of ΛCDM

From the point of view of particle physics, the cosmological constant naturally
emerges as an energy density of the vacuum, since both the cosmological
constant and the vacuum energy present the same dynamical behaviour in the
context of GR. The most important theoretical difficulties correspond to:

The Cosmological Constant (or Smallness) Problem: This problem refers to
the inconsistency of the observed energy density of the cosmological
constant ρΛ ≈ 10−47 GeV 4 with the energy density of the vacuum
ρvac ≈ 1074 GeV 4 which is 10121 orders of magnitude.

The Cosmic Coincidence Problem: The cosmic coincidence problem can be
summarized in the following question: Why the present values of the energy
densities of the cosmological constant and of matter are of the same order
of magnitude, i.e. ρΛ,0/ρm,0 ∼ O(1).
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Observational Challenges of ΛCDM (1/2)

The best fit parameter values of ΛCDM have been reported by a plethora of
missions. Perhaps the most known corresponds to the Planck mission which
uses CMB+BAO data to constrain the six basic parameters of ΛCDM to an
extreme accuracy. As a result in the context of GR the current concordance
model is known as Planck/ΛCDM.

Parameter Name Value

Ωb,0 h2 Baryon Density 0.02237 ± 0.00015
Ωc,0 h2 Cold Dark Matter Density 0.1200 ± 0.0012
100 θMC Angular Size of the Sound Horizon at Recombination 1.04092 ± 0.00031

τ Optical Depth 0.0544 ± 0.0073
ln(1010 As ) Amplitude of Curvature Primordial Perturbations 3.044 ± 0.014

ns Spectral Index 0.9649 ± 0.0042

Observationally, a number of different cosmological datasets analysed in the
last decade seem to prefer different values (at a level of 2σ or more) for
some of the basic parameters of Planck/ΛCDM.

Planck Collaboration, Astron.Astrophys. 641 (2020) A6,
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Observational Challenges of ΛCDM (2/2)

The most important “tensions” of Planck/ΛCDM include the following:

The H0 Tension: The first tension refers to the mismatch of the value of the
Hubble constant

H0 Tension Planck Measurement Supernova Measurement

H0 67.36 ± 0.54 km s−1 Mpc−1 73.04 ± 1.04 km s−1 Mpc−1

The tension is at a 5σ level

The S8 or Growth Tension: This is a milder tension and refers to mismatch

of the values of the parameter S8 ≡ σ8

√
Ωm,0/0.3, where σ8 corresponds to

the density rms fluctuations within spheres of radius R = 8h−1Mpc.

S8 Tension Planck Measurement Weak Lensing Measurement

S8 = σ8

√
Ωm,0/0.3 0.834 ± 0.016 0.766+0.020

−0.014, 0.79+0.05
−0.04

The tension is at a 2− 3σ level
Planck Collaboration, Astron.Astrophys. 641 (2020) A6, A. Riess et al, arXiv:2112.04510,
DES Collaboration Mon.Not.Roy.Astron.Soc. 488 (2019), 4779, KiDS Collaboration Astron.Astrophys. 646, A140 (2021)
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As a result, a vast variety of ideas have been proposed in the literature in order to

address the aforementioned (theoretical or observational) tensions. A simple way

to account for the existing tensions is to allow for the possibility of extensions of

GR in the form of modified theories of gravity.
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Growth Data: Observational Probe of Perturbations (1/2)

The RSD data probe the growth of perturbations. Actually the data are obtained
by detecting the distortions of the power spectrum of perturbations which are
induced by peculiar velocities

The growth rate of perturbations f (a) is defined as

f (a) =
dlnδ(a)

dlna
where δ(a) ≡ δρm

ρm
is the linear matter overdensity growth factor

(1)
and ρm is the background matter density.

Combining Eq.(1) with the density rms fluctuations within spheres of radius
R = 8h−1Mpc, i.e.

σ(a) = σ8
δ(a)

δ(1)
(2)

The observable product f σ8(a) that is published by various surveys corresponds to

f σ8(a) ≡ f (a) · σ(a) =
σ8

δ(1)
a δ′(a) (3)
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Growth Data: Observational Probe of Perturbations (2/2)

Considering a flat wCDM background with Ωr,0 = 0, the Hubble rate is

H2(a) = H2
0

[
Ωm,0 a

−3 + (1− Ωm,0) a−3(1+w)
]

(4)

and thus we can solve numerically the dynamical growth equation

δ′′(a) +

(
3

a
+

H ′(a)

H(a)

)
δ′(a)− 3

2

Ωm,0 Geff(a, k)/GN

a5H2(a)/H2
0

δ(a) = 0 (5)

and construct the theoretically predicted f σ8 as

f σ8(a) ≡ f (a) · σ(a) =
σ8

δ(1)
a δ′(a) (6)

In the analysis of the first paper we consider the viable parametrization of the form

Geff = GN

[
1 + ga(1− a)n − ga(1− a)n+m

]
(7)

where ga is a phenomenological parameter and n,m correspond to integer

parameters with n ≥ 2 and m > 0. In the analysis we set n = m = 2.
L. Kazantzidis, L. Perivolaropoulos Phys.Rev. D 97 (2018) no.10, 103503,
S. Nesseris et al. Phys.Rev. D96 (2017) no.2, 023542
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Model Predictions

0.0 0.5 1.0 1.5

0.2

0.3

0.4

0.5

0.6

0.7

z

fσ
8(
z)

Planck15/ΛCDM

ΛCDM Best Fit(Ωm,0=0.28±0.02,σ8=0.78±0.01)

Planck15/ΛCDM + Evolving Geff with ga=-0.91±0.17

WMAP7/ΛCDM

The Planck15/ΛCDM prediction (red dashed line) is higher than the majority of the

f σ8 datapoints indicating that the growth rate is too large. The fit improves either

by considering a smaller value of Ωm,0 and/or σ8 (e.g. considering the results of

the survey WMAP7 - green dashed line) or by adopting an evolving parametrization

with Geff < GN at low z , i.e. similar to the previous one for gα < 0 (black dashed

line).
Lavrentios Kazantzidis (PhD Candidate) University of Ioannina 10 / 39



χ2 Formation (1/2)

We define the vector

V i (zi ,Ωm,0, ga, σ8) ≡ f σ8,i −
f σ8(zi ,Ωm,0, ga, σ8, ga)

q
(
z ,Ωm,0,Ω

fidi
m,0

) (8)

where q(z ,Ωm,0,Ω
′
m,0) corresponds to the fiducial correction factor defined

as

q(z ,Ωm,0,Ω
′
m,0) =

H(z) dA(z)

H ′(z) d ′A(z)
(9)

The χ2 function is constructed the usual way

χ2(Ωm,0,w , ga, σ8) = V iC−1
ij V j (10)

where Cij is the total covariance matrix. Cij is assumed to be diagonal
except for the subset of WiggleZ survey (the only one published).

L. Kazantzidis, L. Perivolaropoulos Phys.Rev. D 97 (2018) no.10, 103503,
S. Nesseris et al. Phys.Rev. D96 (2017) no.2, 023542
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χ2 Formation (2/2)

The considered form of Cij is

C growth,total
ij =

 σ2
1 0 0 · · ·

0 CWiggleZ
ij 0 · · ·

0 0 · · · σ2
N

 (11)

where CWiggleZ
ij = 10−3

 6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

 and its non diagonal elements

can be approximated as Cij ' 0.5
√
CiiCjj . Obviously, this form is an

oversestimation as it ignores the existing correlations among different datapoints.

L. Kazantzidis, L. Perivolaropoulos Phys.Rev. D 97 (2018) no.10, 103503,
S. Nesseris et al. Phys.Rev. D96 (2017) no.2, 023542

Lavrentios Kazantzidis (PhD Candidate) University of Ioannina 12 / 39



Growth Data Compilation (f σ8,i) of our Analysis

z f σ8 ± σf σ8

0.35 0.440 ± 0.050
0.77 0.490 ± 0.18
0.17 0.510 ± 0.060
0.02 0.314 ± 0.048
0.02 0.398 ± 0.065
0.25 0.3512 ± 0.0583
0.37 0.4602 ± 0.0378
0.25 0.3665 ± 0.0601
0.37 0.4031 ± 0.0586
0.44 0.413 ± 0.080
0.60 0.390 ± 0.063
0.73 0.437 ± 0.072

0.067 0.423 ± 0.055
0.30 0.407 ± 0.055
0.40 0.419 ± 0.041
0.50 0.427 ± 0.043
0.60 0.433 ± 0.067
0.80 0.470 ± 0.080
0.35 0.429 ± 0.089
0.18 0.360 ± 0.090

0.38 0.440 ± 0.060
0.32 0.384 ± 0.095
0.32 0.48 ± 0.10
0.57 0.417 ± 0.045
0.15 0.490 ± 0.145
0.10 0.370 ± 0.130
1.40 0.482 ± 0.116
0.59 0.488 ± 0.060
0.38 0.497 ± 0.045
0.51 0.458 ± 0.038
0.61 0.436 ± 0.034
0.38 0.477 ± 0.051
0.51 0.453 ± 0.050
0.61 0.410 ± 0.044
0.76 0.440 ± 0.040
1.05 0.280 ± 0.080
0.32 0.427 ± 0.056
0.57 0.426 ± 0.029

0.727 0.296 ± 0.0765
0.02 0.428 ± 0.0465
0.6 0.48 ± 0.12
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The 1σ − 4σ Confidence Contours
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General Trend: The tension disappears (becomes less than 1σ) when a
subsample of the 20 most recently published data is used.
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Reasons for the Evolution of the Tension

This general trend can be due to the following

(i) The fiducial models considered in early datapoints that were different
from the Planck15/ΛCDM considered in more recent studies.

(ii) The assumed form of the covariance matrix.

(iii) The increased redshifts of more recent datapoints.

(iv) Improved methods and reduced systematics.
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i) Fiducial Model Correction

Recall that the correction factor q(z ,Ωm,0,Ω
′
m,0) that we used in the analysis

should be taken as a rough estimate and is of the form

q(z ,Ωm,0,Ω
′
m,0) = [H(z) dA(z)]/[H ′(z) d ′A(z)] (12)

so, in order to estimate its effect, we set q = 1 and re-

construct the confidence contours in the same parametric space
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Result: The qualitative feature of the reduced tension for late data remains

practically unaffected.
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ii) Form of the Total Covariance Matrix

We introduce a number of randomly selected non-diagonal elements and
apply positive correlations in 12 randomly selected pairs of datapoints (about
20% of the data) while keeping the total covariance matrix symmetric.

The positions of the non-diagonal elements are chosen randomly and the
magnitude of the randomly selected covariance matrix element Cij is set to
be Cij = (1/2)σi σj

Result: The introduction of a nontrivial covariance matrix does not change the

qualitative conclusion of the reduced tension.
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iii) Increased Redshifts of More Recent Datapoints

The trend for reduced tension of the growth data with Planck15/ΛCDM can
be due to the increased redshifts of more recent datapoints.

Due to the probe of higher redshifts the more recent datapoints also have
larger errorbars.
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Result: More recent datapoints probe redshift regions where different ΛCDM mod-

els make similar predictions. This degeneracy is due to matter domination that

appears in all viable models at early times.
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Parameter gα

The trend for reduced tension of recent growth data with Planck15/ΛCDM
implies also a trend for reduced indications in the parameter gα.

The 1σ range implied for gα from the full f σ8 data set (red point), and for
20 point f σ8 subsamples starting from the earliest to the latest subsample

Result: Only late data are consistent with GR.
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Consistency with f (R) Theories

The best fit form of the parameter gα indicate a decreasing Geff(z) at low z
which may lead to constraints on the fundamental parameters of modified
theories of gravity.

The basic question that arises is the following “Which modified gravity

models are consistent with Geff (z)
GN

< 1 at low z?”

For viable f (R) theories the answer is clearly negative since

Geff(k, z) = GN


(
df

dR

)−1
1 + 4

(
d2f
dR2 /

df
dR

)
· k2 (1 + z)2

1 + 3
(

d2f
dR2 /

df
dR

)
· k2 (1 + z)2

 (13)

which lead to Geff (z)
GN

> 1 since the factor in front of the brackets in (13)
increases when R decreases with the expansion, and thus it is always larger
than one. Hence, the f (R) modified gravity theories are inconsistent with
the trend indicated by growth data, independently of the form of the
background H(z).

A. Starobinsky JETP Lett. 86, 157163 (2007),
R. Gannouji, L. Kazantzidis, D. Polarski, L. Perivolaropoulos Phys.Rev. D 98 (2018) no.10, 104044
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Consistency with Scalar Tensor Theories (1/3)

In scalar-tensor gravity the action has the following form

S =

∫
d4x
√
−g
[

1

2
F (φ)R − 1

2
gµν∂µφ∂νφ− U(φ)

]
+ Sm (14)

By varying this action we get the corresponding equations of motion.
Usually it is convenient to express the equations in terms of the redshift z .
So in scalar tensor theories the Newton’s constant present a dynamical
evolution and is of the form

Geff(z)/GN =
1

F (z)

F (z) + 2F 2
,φ

F (z) + 3
2F

2
,φ

(15)

For low z we can expand the dynamical Newton’s constant Geff(z), which
up to the second order is of the following form

Geff(z) = Geff(0) + G ′eff(0)z +
z2

2
G ′′eff(0) + . . . (16)

G. Esposito-Farese and D. Polarski Phys. Rev. D 63 (2001) 063504
R. Gannouji, L. Kazantzidis, D. Polarski, L. Perivolaropoulos Phys.Rev. D 98 (2018) no.10, 104044
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Consistency with Scalar Tensor Theories (2/3)

Applying the solar system constraints, i.e. that

lim
z→0

G ′eff(z) ' 0

we deduce that Eq. (16) reduces to

Geff(z) = Geff(0) +
z2

2
G ′′eff(0) + . . . (17)

Furthermore at z = 0 we have, G ′eff(0) = 0→ F ′(0) = 0 and that
Geff(0) = GN = 1→ F (0) = 1 so we obtain

G ′′eff(0) = F ′′(0)

(
−1 +

F ′′(0)

φ′(0)2

)
Assuming once again a wCDM background, the second derivative of Geff(z)
at z = 0 takes the following form

G ′′eff(0) = 9(1 + w)(−1 + Ωm,0) +
9(1 + w)2(−1 + Ωm,0)2

φ′(0)2
+ 2φ′(0)2 (18)

S. Nesseris and L. Perivolaropoulos, Phys. Rev. D75 (2007) 023517
R. Gannouji, L. Kazantzidis, D. Polarski, L. Perivolaropoulos Phys.Rev. D 98 (2018) no.10, 104044
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Consistency with Scalar Tensor Theories (3/3)

Fixing a ΛCDM background in Eq. (18), then Eq. (17) takes the form

Geff(z) = Geff(0) +
1

2
G ′′eff(0) z2 = GN +

1

2
G ′′eff(0) z2 = 1 + φ′(0)2 z2 + . . . (19)

which is always an increasing function of z if we assume that the kinetic term of φ′(z) is
always positive, an assumption crucial for a self-consistent theory. This is also
demonstrated in the figure below
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MGCAMB Results

If the Newton’s constant is indeed evolving with redshift, then we expect to
find similar hints to other geometrical and/or dynamical probes, such as the
CMB and the SnIa data. An evolving Geff(z) would affect the low l CMB
angular power spectrum due to the Integrated Sachs Wolfe effect.

To quantify this effect, we reconstruct the CMB power spectrum using the
2019 version of the Modified Growth with CAMB (MGCAMB) numerical
package

L. Perivolaropoulos and L. Kazantzidis, Book Chapter In: Saridakis E.N. et al. (eds) Modified Gravity and Cosmology. Springer
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MGCOSMOMC Results

In order to fully constrain the values of the predicted observables we use the 2019
version of Modified Growth with Cosmological MonteCarlo (MGCOSMOMC)
fixing the majority of the parameters to the corresponding Planck15/ΛCDM
values and derive the following 1σ − 2σ confidence contours

L. Perivolaropoulos and L. Kazantzidis, Book Chapter In: Saridakis E.N. et al. (eds) Modified Gravity and Cosmology. Springer
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M − H0 Degeneracy

An evolving Geff(z) would leave a characteristic signature in SnIa data, since
it implies an evolving Chandrasekhar mass mch leading to lower values for
the absolute magnitude M at recent cosmological times with respect to the
best fit value of M in the context of ΛCDM.

However, the absolute magnitude M is degenerate with H0 through the
parameter M (usually marginalized as a nuisance parameter) that is defined
as

M≡ M + 5 log10

(
c/H0

1Mpc

)
+ 25 = M − 5 log10(h) + 42.38 (20)

where h ≡ H0/100 km s−1 Mpc−1, leading to lower values of M at low z
than the standard ΛCDM ones.

Such an effect could be also caused by higher local values of H0 in the
context of e.g. a local matter underdensity scenario.
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SnIa as Standard Candles

SnIa have been widely used as standard candles to probe the expansion rate
H(z) of the late Universe. The theoretically predicted apparent magnitude
mth(z) of the SnIa can be expressed as

mth(z) = M + 5 log10 [DL(z)] + 5 log10

(
c/H0

1Mpc

)
+ 25 =M+ 5 log10 [DL(z)]

(21)
where DL(z) ≡ H0 dL(z)/c is the Hubble free luminosity distance and the
luminosity distance dL(z) in a flat Universe is

dL(z) = c (1 + z)

∫ z

0

dz ′

H(z ′)
(22)

The latest publicly available that is the Pantheon dataset consisting of six
independent probes that cover the redshift range 0.01 < z < 2.3, giving a
total of 1048 SnIa. The relevant χ2 function is

χ2(M,Ωm,0) = V i
Panth. C̄

−1
ij V j

Panth. (23)

where V i
Panth. ≡ mobs(zi )−mth(z) and C̄ij is the diagonal covariance matrix

of the statistical uncertainties.
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Pantheon Results (1/4)

Applying the maximum likelihood method for a ΛCDM background, we get
Ωm,0 = 0.285± 0.012 and M = 23.803± 0.007. For a redshift independent
M, we anticipate that any subset of the Pantheon dataset should give a
best fit value consistent (within the 1σ threshold) with the corresponding
best fit values of the full dataset.

We use two different methods to test this hypothesis:

I We consider cumulative subsets of the full data compilation with
redshift ranges z ∈ [0.02, zmax ], where zmax is a cutoff redshift
increasing in steps of ∆zmax = 0.01 and apply the maximum likelihood
method for each subset.

I We consider cumulative bins by ranking the Pantheon data from lower
to higher redshifts finding the best fit value of M along with the
corresponding 1σ error in the context of ΛCDM for the first 100 points
and repeating the above procedure for the entire dataset (the i th point
is obtained by repeating the above procedure for the datapoints from i
to i + 100).

L. Kazantzidis and L. Perivolaropoulos Phys.Rev.D 101 (2020) 12, 123516
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Pantheon Results (2/4)

Result: At low reshifts and in particular in the resdhift range zmax ∈ [0.02, 0.15]
the data seem to prefer lower values of M from the best fit value indicated by
the full dataset (continuous dashed line). This difference is at a level of about 2σ
and drops drastically for zmax > 0.15. The observed difference in the resdhift
range zmax ∈ [0.02, 0.15], corresponds to lower values of M (middle panel) or
equivalently higher values of h (right panel).

L. Kazantzidis and L. Perivolaropoulos Phys.Rev.D 101 (2020) 12, 123516
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Pantheon Results (3/4)
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Result: For zmean < 0.3 the best fit value of M oscillates around the best fit
value of the full dataset at a level of about 1σ − 2σ implying a similar behavior
for M (middle panel) and h (right panel) in the same redshift range. The redshift
range of the oscillation in this case is larger than the detected redshift range of
the variation since as the cutoff redshift increases, so does the size of the
corresponding subsample canceling as a result the oscillating effect.

L. Kazantzidis and L. Perivolaropoulos Phys.Rev.D 101 (2020) 12, 123516

Lavrentios Kazantzidis (PhD Candidate) University of Ioannina 30 / 39



Pantheon Results (3/4)

0.0 0.2 0.4 0.6 0.8 1.0

23.76

23.78

23.80

23.82

23.84

23.86

zmean

ℳ

0.0 0.2 0.4 0.6 0.8 1.0
-19.28

-19.26

-19.24

-19.22

-19.20

-19.18

zmean
M

0.0 0.2 0.4 0.6 0.8 1.0
0.72

0.73

0.74

0.75

0.76

zmean

h

Result: For zmean < 0.3 the best fit value of M oscillates around the best fit
value of the full dataset at a level of about 1σ − 2σ implying a similar behavior
for M (middle panel) and h (right panel) in the same redshift range. The redshift
range of the oscillation in this case is larger than the detected redshift range of
the variation since as the cutoff redshift increases, so does the size of the
corresponding subsample canceling as a result the oscillating effect.

L. Kazantzidis and L. Perivolaropoulos Phys.Rev.D 101 (2020) 12, 123516

Lavrentios Kazantzidis (PhD Candidate) University of Ioannina 30 / 39



Pantheon Results (4/4)

In order to increase the low z subsample and improve the statistics, we sort once
more the Pantheon data from lowest to highest redshifts and split the entire
dataset in foul equal bins containing 262 uncorrelated datapoints.
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Result: An oscillating behaviour such as the previous one is evident at low
redshifts z . Notice that the best fit values of M and Ωm,0 for the lowest z bin
(0.01 < z < 0.13) are more than 2σ lower than the corresponding best fit values
of the full dataset. For the first bin we derive ∆M≡Mbf −Mbin1 ≈ 0.04± 0.02
→ δρ0/ρ0 = −0.10± 0.04
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Possible Explanations

The ≈ 2σ detected signal regarding M at low redshifts can be attributed

(i) A local underdensity that vanishes at large scales, since a lower M than the
best fit value indicated by the full dataset in the low redshift regime, leads
to a higher value of h. → Not Excluded by the Pantheon Data.

(ii) A modified theory of gravity, since it implies a redshift depence of the
absolute magnitude M, due to e.g. a time variation of Newton’s constant in
the context of a modified theory scenario. → Not Excluded by the Pantheon
Data.

(iii) Statistical and/or systematic fluctuations of the data around the true
ΛCDM model. The probability of this case can be estimated creating a large
number of simulated Pantheon like datasets in the context of a ΛCDM
background taking into account the full covariance matrix Cij . → Not
Excluded by the Pantheon Data.
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H0 Crisis or M Crisis? (1/2)

The H0 Tension refers to the incosistency between the measurement of the
SnIa H0 = 73.04± 1.04 km s−1 Mpc−1 (standard distance ladder method)
and the measurement from the CMB data H0 = 67.36± 0.54 km · s−1·
· Mpc−1 (inverse distance ladder method).

The basic steps of the standard distance ladder method are the following:
I Calibrate the Cepheid variable stars applying parallax methods.
I Use the calculated distances to “move further” towards galaxies that

include mostly SnIa.
I Using Eq. (21) [Eq. for mth(z)] in the redshift range 0.023 < z < 0.15,

the parameter M is measured under the assumption of a constant
M ≡ Mc .

I The considered Hubble free luminosity distance DL(z) is Taylor
expanded as

DL(z) = z

[
1 +

1

2
(1− q0) z − 1

6
(1− q0 − 3 q2

0 + j0) z2 + . . .

]
where q0 = −0.55 and j0 = 1 (ΛCDM values).

I The value of H0 is inferred using an extrapolation method.
A. G. Riess et al., Astrophys. J. 699, 539563 (2009)
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H0 Crisis or M Crisis? (2/2)

This methodology, is oblivious to any possible transitions of M at z < 0.023.
If for example, such a transition had occurred at zt = 0.01 (or lower), then
the M that was derived using the Cepheids for z up to ≈ 0.01 should not be
considered to be the same for the nearby SnIa.

So, maybe the designation “M tension/crisis” might be more suitable to
describe the problem.

We consider two dark energy models:
I A dark energy model with a late time M transition model (LMT ) of

the form
M(z) = M< + ∆M Θ(z − zt) (24)

where zt corresponds to the transition redshift, M< ≡ Mc = −19.24
mag is the Cepheid value, ∆M is the parameter that quantifies the shift
from the Mc value and Θ corresponds to the Heaviside step function.

I A dark energy model with a late time M transition model including a
simultaneous transition on the same redshift zt of the dark energy wDE

(LwMT ) of the form

wDE (z) = −1 + ∆w Θ(zt − z) (25)
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I A dark energy model with a late time M transition model including a
simultaneous transition on the same redshift zt of the dark energy wDE

(LwMT ) of the form

wDE (z) = −1 + ∆w Θ(zt − z) (25)
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Statistical Analysis Results (1/2)

We modify the CLASS/MontePython numerical codes and consider the
Planck18 CMB data (the TTTEEE likelihoods), the default BAO data as
well as Lyα BAO data, the Pantheon SnIa compilation and a robust
compilation of 18 RSD data.

For the LwMT model we impose the priors ∆w ∈ [−0.7, 0.7] and at ≤ 0.99
to obtain the following best fits

Parameter best-fit mean±σ 95.5% lower 95.5% upper

Ωm,0 0.3018 0.3066+0.0064
−0.0065 0.2939 0.3196

H0 68.56 68.03+0.55
−0.58 66.94 69.15

σ8 0.8141 0.8089± 0.0065 0.7957 0.8219
∆M −0.1676 −0.1698± 0.012 −0.1933 −0.1467
∆w unconstrained unconstrained unconstrained unconstrained
at 0.9856 > 0.985 > 0.984 > 0.984

M> ≡ Mc + ∆M −19.408 −19.410± 0.012 −19.433 −19.387

χ2
min 3834

Result: The at (or equivalently zt) reaches the highest (lowest) eligible value
imposed by the prior and ∆w seems to be neglected by the data.
G. Alestas, D. Camarena, E. Di Valentino, L. Kazantzidis, V. Marra, S. Nesseris and L. Perivolaropoulos, to appear in
Phys.Rev.D.
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Statistical Analysis Results (2/2)

For the LMT model, we set ∆w = 0 and zt = 0.01 and obtain the following best
fits

Parameter best-fit mean±σ 95.5% lower 95.5% upper

Ωm,0 0.3088 0.3082+0.0052
−0.0058 0.2976 0.3193

H0 67.88 67.89+0.42
−0.40 67.06 68.71

σ8 0.8085 0.8084+0.0058
−0.0061 0.7963 0.8205

∆M −0.170 −0.172± 0.012 −0.195 −0.149
M> ≡ Mc + ∆M −19.410 −19.412± 0.012 −19.435 −19.389

χ2
min 3835

Result: We confirm that the introduction of ∆w has basically no effect in the
quality of fit. Moreover, the inferred value of M> = −19.41 mag fully agrees with
the CMB constraint of the absolute magnitude M = −19.40 mag.

G. Alestas, D. Camarena, E. Di Valentino, L. Kazantzidis, V. Marra, S. Nesseris and L. Perivolaropoulos, to appear in
Phys.Rev.D.
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Comparison of Different Dark Energy Models with a Flat
Prior on M

In order to truly resolve the Hubble crisis, a model should provide a
consistent measurement with Mc at the 1σ level, but also a χ2 value similar
(or even better) to ΛCDM.

We consider the wCDM, the CPL, the PEDE as well as ΛCDM and impose
a flat prior on the absolute magnitude M ∈ [−19.28,−19.2] mag and find

Params ΛCDM wCDM CPL LwMT PEDE LMT
(zt ≥ 0.01) (zt = 0.01)

Ωm,0 0.2564+0.0018
−0.0019 0.2571+0.0019

−0.0020 0.2719+0.0041
−0.0044 0.3066± 0.0063 0.2582± 0.0020 0.3082± 0.0053

H0 72.40± 0.16 73.99+0.26
−0.27 72.38± 0.48 68.03± 0.55 73.90+0.17

−0.19 67.89± 0.40
σ8 0.8045+0.0072

−0.0081 0.8507+0.0084
−0.0083 0.8511+0.0084

−0.0081 0.8088± 0.0063 0.8517± 0.0059 0.8084± 0.0059
M ∼ −19.28 ∼ −19.28 ∼ −19.28 −19.24 (M<) ∼ −19.28 −19.24 (M<)

∆M - - - −0.170± 0.011 - −0.172± 0.011
M> - - - −19.410± 0.011 - −19.412± 0.011
∆w - - - unconstrained - -
at - - - > 0.987 - -
w0 - −1.162+0.021

−0.019 −0.844+0.077
−0.089 - - -

wa - - −1.27+0.38
−0.31 - - -

χ2
min 3964 3889 3875 3834 3886 3835

∆χ2
M - −75 −89 −130 −78 −129

Result: All models provide M ∼ −19.28 mag, i.e. the lowest eligible value of the
imposed prior and ΛCDM has the worse overall fit due to the fixed value of M.
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Comparison of Different Dark Energy Models with a
Gaussian Prior on M

For the same dark energy models imposing a Gaussian prior on the absolute
magnitude M of the form Mc = −19.24± 0.04 mag we find

Parameters ΛCDM wCDM CPL LwMT PEDE LMT
(zt ≥ 0.01) (zt = 0.01)

Ωm,0 0.3022+0.0051
−0.0052 0.2943± 0.0065 0.2974+0.0067

−0.0068 0.3073+0.0063
−0.0062 0.2789± 0.0049 0.3082± 0.0053

H0 68.36± 0.4 69.47± 0.72 69.25± 0.73 67.96± 0.55 71.85± 0.45 67.89± 0.40
σ8 0.8076+0.0058

−0.0062 0.8215+0.0095
−0.0097 0.8248+0.0096

−0.0097 0.8084+0.0064
−0.0065 0.8531± 0.0059 0.8085± 0.0057

S8 0.8105+0.0097
−0.01 0.8135± 0.0098 0.8210+0.0107

−0.0106 0.8181± 0.0100 0.8226± 0.0095 0.8194± 0.0099
M −19.40± 0.01 −19.38± 0.02 −19.37± 0.02 −19.26± 0.04 −19.33± 0.01 −19.24± 0.04

∆M - - - −0.145+0.038
−0.035 - −0.168± 0.039

M> - - - −19.410± 0.011 - −19.411± 0.011
∆w - - - unconstrained - -
at - - - > 0.986 - -
w0 - −1.050± 0.027 −0.917± 0.078 - - -
wa - - −0.53+0.33

−0.28 - - -

χ2
min 3854 3851 3848 3833 3867 3835

∆χ2 - −3 −6 −21 +13 −19

Result: The transition models perform better than the rest of the models,
providing a consistent value with the Cepheid calibrated value Mc (the only ones)
as well as a better quality of fit with respect to ΛCDM.
G. Alestas, D. Camarena, E. Di Valentino, L. Kazantzidis, V. Marra, S. Nesseris and L. Perivolaropoulos, to appear in
Phys.Rev.D.
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Summary and Conclusions

Undoubtedly, we live in an exciting
cosmological era. A plethora of
alternative cosmological data in the
last years hint towards the
conclusion that the concordance
model ΛCDM is not the end of the
road and a new more complete
theory of gravity is needed.

All the models presented here have
the potential to explain some of the
basic problems of ΛCDM. We
expect that the situation will be
further clarified in the next
decades, when new improved
observational data from upcoming
missions will be published.
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Thank you for your attention!
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