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Abstract

In this PhD dissertation we study the cosmological consequences of modified theories of gravity.
Motivated by the theoretical and observational challenges of the concordance model ΛCDM,
we use up to date cosmological data from both geometric and dynamical probes to constrain
modified gravity theories and extract the relevant best fit parameters. In particular, we first in-
troduce the reader to the mathematical formalism of standard cosmology and then focusing on
one of the two major tensions that ΛCDM faces (σ8 tension), we introduce a purely phenomeno-
logical parametrization for the evolving Newton’s constant Geff and constructing an up to date
compilation of growth data we extract its best fit parameters. Then, we study viable modified
theories of gravities (such as f(R) and scalar tensor theories) in order to see if they have the
potential to support the observed behavior the evolving Newton’s constant. Moreover, we ex-
amine other cosmological data (such as the low l cosmic microwave background data as well as
the Pantheon compilation, i.e. the latest publicly available Type Ia supenovae compilation that
is publicly available) to impose strong constraints on the phenomenological parametrization for
Geff . Next, we study the constraining power (sensitivity) of a wide range of cosmological ob-
servables on cosmological parameters, showing that the sensitivity is actually a rapidly varying
function of the redshift where the observable is measured and not a monotonically increasing
function. In addition, we consider two late time gravitational transition dark energy models
that have the ability to simultaneously tackle both the H0 and growth problems and using the
full cosmic microwave background data as well as some other up to date cosmological data, we
obtain their quality of fit and compare it with the quality of fit provided by other well studied
dark energy models that have been proposed as possible solutions in the literature as well as
with the concordance model of standard cosmology. Finally, we study the impact of various
modified gravity models in the sub-mm scales using the data of the Washington experiment.
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Σύνοψη

Στην παρούσα Διδακτορική Διατριβή μελετάμε τις κοσμολογικές συνέπειες τροποποιημένων θεω-

ριών βαρύτητας. Ορμώμενοι από τις θεωρητικές και παρατηρησιακές προκλήσεις του καθιερωμένου
κοσμολογικού προτύπου ΛCDM, χρησιμοποιούμε πρόσφατες γεωμετρικές και δυναμικές παρατηρή-
σεις για την ταυτοποίηση χαρακτηριστικών προβλέψεων συγκεκριμένων θεωριών τροποποιημένης

βαρύτητας και τον υπολογισμό των αντίστοιχων βέλτιστων τιμών των παραμέτρων τους. Αρχικά,
εισάγουμε τον αναγνώστη στον μαθηματικό φορμαλισμό της Κοσμολογίας και έπειτα επικεντρ-

ωνόμενοι στη μία από τις δύο παρατηρησιακές ασυμβατότητες που αντιμετωπίζει το ΛCDM (“σ8

ασυμβατότητα”), εισάγουμε μια φαινομενολογική παραμετροποίηση για την δυναμικά εξελισσό-
μενη σταθερά του Νεύτωνα Geff . Κατασκευάζοντας μία εκτεταμένη συλλογή δεδομένων που
περιγράφουν Παραμορφώσεις στον Χώρο της Ερυθράς Μετατόπισης, υπολογίζουμε τις βέλτιστες
τιμές των παραμέτρων της παραμετροποίησης της Geff και μελετάμε συγκεκριμένες τροποποιη-

μένες θεωρίες βαρύτητας (όπως f(R) και βαθμοτανυστικές θεωρίες βαρύτητας), για να δούμε,
εάν μπορούν να υποστηρίξουν τη συγκεκριμένη παρατηρήσιμη συμπεριφορά της. ΄Επειτα, εξετά-
ζουμε και άλλου τύπου παρατηρησιακά δεδομένα (όπως για παράδειγμα δεδομένα Κοσμικής Ακτι-
νοβολίας Υποβάθρου και τα δεδομένα Pantheon, δηλαδή τα πιο προσφατα δημοσιευμένα δεδομένα
Υπερκαινοφανών Αστέρων Τύπου Ia) για την εύρεση των βέλτιστων τιμών των παραμέτρων της
φαινομενολογικής παραμετροποίησης Geff . Στο πλαίσιο της παρούσας Διδακτορικής Διατριβής
ερευνήθηκε επιπλέον η ευαισθησία ερευνητικών αποστολών στην ανίχνευση ενός μεγάλου εύρους

κοσμολογικών παραμέτρων και αποδείχθηκε οτι η ευαισθήσια τους δεν αυξάνει γραμμικά με την

τιμή της ερυθράς μετατόπισης, αλλά παρουσιάζει μια μεταβολή ανάλογα με την περιοχή της ερυθράς
μετατόπισης που πραγματοποιείται η μέτρηση/ανίχνευση. Ακόμα, μελετήθηκαν μοντέλα σκοτεινής
ενέργειας που παρουσιάζουν μια απότομη μεταβολή της απόλυτης λαμπρότηταςM σε συγκεκριμένη
τιμή της ερυθράς μετατόπισης, τα οποία έχουν τη δυνατότητα να λύσουν τόσο την “H0 ασυμβατ-

ότητα” όσο και τη “σ8 ασυμβατότητα” που αντιμετωπίζει το μοντέλο ΛCDM. Ειδικότερα, υπ-
ολογίσαμε την ποιότητα προσαρμογής αυτών των μοντέλων σε διάφορα προσφατα κοσμολογικά

δεδομένα (μεταξύ αυτών και τα πλήρη δεδομένα Κοσμικής Ακτινοβολίας Υποβάθρου) και την
συγκρίναμε με την ποιότητα προσαρμογής που παρέχει τόσο το μοντέλο ΛCDM, όσο και άλλα
εναλλακτικά μοντέλα σκοτεινής ενέργειας που έχουν προταθεί στη βιβλιογραφία ως λύσεις των

παρατηρούμενων ασυμβατοτήτων στο πλαίσιο του μοντέλου ΛCDM. Τέλος, μελετήθηκαν οι επιπ-
τώσεις παραμετροποιήσεων που προκύπτουν από τροποποιημένες θεωρίες βαρύτητας στις κλίμακες

χιλιοστού, με την αξιοποίηση δεδομένων του πειράματος Washington.
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Preface

Cosmology is undoubtedly one of the most intriguing and important branches of modern
Physics. Along with Quantum Field Theory, the theory that combines quantum mechanics and
special relativity, Cosmology is established as one of the two pillars of modern Physics. In the
beginning of the 20th century, Cosmology hardly existed as a scientific discipline. Nowadays,
on the contrary, the tremendous progress of technology has led to a plethora of cosmological
observations establishing the branch of Cosmology as one of the most dazzling and active areas
of scientific research.

The first step towards a mathematical formulation for Cosmology, was General Theory of
Relativity (GR) that was first introduced by Albert Einstein in 1915 revolutionizing the idea
of space and time. Einstein proposed that both space and time are actually interwoven into
one entity known as continuum (or spacetime) and that gravity is a geometric property of
the continuum itself. In particular, he realized that the more massive an object is the more
it distorts the continuum around it. At its core, GR implies that the spacetime curvature
can be related directly to the energy and momentum of a fluid, through a system of partial
differential equations that are called “Einstein’s Field Equations”. GR is nowadays considered
the most widely accepted gravitational theory mainly due to its ability to make extremely
accurate predictions in a wide variety of phenomena that Newtonian gravity fails to explain,
such as the “anomalous” perihelion of Mercury’s orbit [1], which according to GR should
change by approximately 44 arcsec every century, the gravitational lensing effect caused by the
Sun’s gravity which was confirmed by Arthur Eddington in 1919 during a solar eclipse [2] etc.
Moreover, GR predicts the existence of objects such as black holes [3–8] as well as the existence
of gravitational waves that was confirmed a few years ago [9–11].

The discovery of GR was a major step towards the constitution of the Standard Cosmological
Model which is widely known as “Concordance Model” or “ΛCDM ” that corresponds to the
mathematical parametrization of the Big Bang Cosmology [12–14] that accurately explains how
the Universe expanded from an initial infinitely hot and dense singularity almost 13.8 billion
years ago to the Universe that we observe today. According to ΛCDM, there are only three
major ingredients that account for the composition of the observed Universe. These are the
following:

• Baryonic Matter and Radiation: The baryonic (or ordinary matter) corresponds to the
baryons and leptons, while the radiation describes particles with zero mass such as pho-
tons. Surprisingly, only a small fraction of the Universe (4%) corresponds to the observ-
able matter.

• Dark Matter: The Dark Matter constitutes about 22% of the total mass energy density
of the Universe. Even though Dark Matter is a well established idea [15–18] and it is of
paramount importance for the ΛCDM model, its true nature remains one of the greatest
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mysteries of modern Cosmology. It is believed, that it corresponds to an unknown non-
relativistic, stable particle that interacts with ordinary matter only gravitationally. A
great number of models have been proposed in the literature as possible candidates to
embody Dark Matter including (but not limited to) Weakly Interacting Massive Particles
[19, 20], Massive Astrophysical Compact Halo Objects [21, 22], Primordial Black Holes
[23–26], Quantum Chromodynamics Axions [27,28], Neutralinos [29], Strongly Interacting
Massive Particles [30,31] etc.

• Dark Energy: The other 74% corresponds to another unknown quantity that is dubbed
“Dark Energy” and exhibits repulsive properties in contrast to baryonic matter or radia-
tion. This mysterious form of energy, is responsible for the observed accelerated expansion
of the Universe. In the context of ΛCDM the role of Dark Energy is embodied by the
famous cosmological constant [32].

The cosmological constant was first introduced by Albert Einstein in 1917 [33] in an attempt
to achieve a static Universe, an idea that was favored during this period. However, due to
serious stability issues of such a Universe [34,35] as well as the experimental confirmation that
the galaxies of the Milky Way are straying from each other by Edwin Hubble [36], it was
dismissed approximately fourteen years later1.

Nevertheless, it was reintroduced in 1998 when two different teams, namely the Supernova
Cosmology Project [37] and the High-Redshift Supernova Search Team [38], confirmed using
Type Ia Supernovae that our Universe is indeed accelerating2. Currently, the cosmological
constant is considered to be the prime candidate to explain the observed accelerating expansion
determining the “Concordance Model” to be ΛCDM (Λ stands for the cosmological constant,
while the acronym CDM corresponds to the Cold Dark Matter).

Since then, numerous different probes using different cosmological data (such as Cosmic
Microwave Background data [17, 18, 39], Type Ia Supernovae [40, 41], Cosmic Chronometers
[42–44], Baryon Acoustic Oscillations data [45,46], Redshift Space Distortions that probe large
scale matter perturbations [18, 47, 48], Weak Lensing data [49, 50], Cluster Count data [51–55]
and many more) have provided evidence supporting the existence of the cosmological constant.
Nonetheless, despite its simplicity and its extremely good fit to observational data, ΛCDM is
not flawless and encounters a number of challenges both at the theoretical and the observational
level

Prominent among the theoretical challenges are the cosmological constant [56–60] and the
coincidence problems [61, 62]. The former refers to the divergence between the quantum field
theory prediction of the energy density of the vacuum ρΛ with its observed value3. This mis-
match is approximately 122 orders of magnitude, making it one of the worst predictions in the
history of modern Physics! The latter is associated with the fact that even though the matter
density ρm evolves proportionally to the inverse cubic power of the scale factor, nowadays is
of the same order of magnitude as the energy density of the cosmological constant ρΛ. This
problem can also be seen as a fine-tuning problem, since in the context of ΛCDM the cosmo-
logical constant should dominate at the exact time as it did in order to obtain an expanding

1Einstein characterised the cosmological constant as the “biggest blunder of my life.”
2Adam Riess, Saul Perlmutter and Brian Schmidt won the 2011 Nobel Prize for this particular discovery.
3The cosmological constant and the vacuum energy share the same behaviour dynamically in the context of

GR, so at a first level the assumption that the two quantities are different sides of the same coin is valid.
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Preface

Universe with structures such as galaxies and stars [62]. Therefore, the ratio ρm/ρΛ should take
an incredible accurate value for this to happen.

Since 1998 and the confirmation that the Universe is accelerating, the accuracy of the cos-
mological observations constantly increases, revealing a series of “tensions” in the context of
ΛCDM. When a “tension” for a specific parameter in the context of a particular model is
identified in the literature, then it is implied that the best fit measurements of the specific
parameter obtained from independent probes disagree at level of at least 2σ. The most serious
observational tension in the context of ΛCDM is the so called “H0 tension” and is currently
at a 5σ level. This arises in the case of the Hubble parameter H0 when comparing its indi-
rect measurement from the Cosmic Microwave Background and Baryon Acoustic Oscillations,
using the inverse distance ladder method (H0 = 67.36 ± 0.54 km s−1 Mpc−1) [18] with the
direct measurement from Type Ia supernovae measurement using the standard distance ladder
method (H0 = 73.04 ± 1.04 km s−1 Mpc−1) [63]. However, the tension level rises even further
approaching the 6σ mark depending on the data combination of local measurement that are
used [64, 65]. Another (but milder) tension that unveiled itself in the last couple of years is
the so called “σ8 or S8 or growth tension”. This tension refers to the mismatch in the mea-
surement of the growth rate of cosmological perturbations using peculiar velocities through
Redshift Space Distortions data [66–74], Weak Lensing cosmological data [75–82] as well as
Cluster Count data [17,83,84]. These type of data favor a lower growth rate than the observed
Planck18/ΛCDM value, expressed via the lower density rms matter fluctuations within spheres
of radius 8h−1 Mpc, σ8 and/or the matter density Ωm,0. The “growth tension” is currently
at a 2σ − 3σ level but it raises to approximately a 5σ level when the EG statistic data are
adopted [85]. For more detailed overviews on the main problems and tensions in the context of
ΛCDM see also Refs. [73, 86–94].

Motivated by these difficulties, cosmologists search on both the galactic as well as in the sub-
mm scales for hints towards a more complete theory of gravity that explains these challenges
in a more fundamental manner. As a result, throughout the years many extensions of ΛCDM
have been proposed that address some of the aforementioned problems. These extensions may
involve the anthropic principle [95–98], dynamical dark energy models in which the energy
density of the cosmological constant is promoted to a dark energy density ρDE that presents
a dynamical evolution [99–105], running vacuum models in which the vacuum energy density
is a time dependent quantity [106–114], theories where some sort of scalar field represents the
dark energy (e.g. quintessence dark energy models [115–130], phantom dark energy models
[131–136], k-essence dark energy models [137, 138], scalar tensor theories [139–150] etc.) or
some sort of a perfect fluid (e.g. chaplygin gas [151–155]), modified theories of gravity where
the action of ΛCDM is modified introducing extra terms (that may depend on the Ricci scalar
R [156–180], or on the torsion T [181–190] etc.) or even more complicated modifications such as
extra dimensions [191–193], braneworld models [194–202], Brans Dicke models [203], interacting
dark energy with dark matter models [204–211], interacting dark matter with neutrinos [212],
holographic dark energy models [213–216], early dark energy models [217–223], decaying dark
matter models [224], topological defects [225–227], evaporating primordial black holes [228],
exotic dark energy models [229–243] and many more.

The basic goal of the present thesis is to contribute to this long term effort in identifying
a more complete theory of gravity focusing on the main observational problems of ΛCDM and
studying some of the viable alternative theories proposed above pinpointing their observational
predictions.
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Πρόλογος

Η Κοσμολογία αποτελεί αναμφίβολα έναν από τους πιο ενδιαφέροντες και σημαντικούς κλά-

δους της Φυσικής. Μαζί με την Κβαντική Θεωρία Πεδίου, η οποία συνδυάζει την Κβαντική
Μηχανική και τη Γενική Σχετικότητα, έχει καθιερωθεί ως ένας από τους δύο βασικούς πυλώνες
της Σύγχρονης Φυσικής. ΄Ομως, στις αρχές του 20ου αιώνα, η Κοσμολογία δεν είχε καθιερωθεί
ως κλάδος της Φυσικής. Αντιθέτως, στις μέρες μας, η τεράστια εξέλιξη της τεχνολογίας έχει
οδηγήσει σε μια πληθώρα κοσμολογικών παρατηρήσεων καθιερώνοντάς την ως έναν από τους πιο

εντυπωσιακούς και ενεργούς κλάδους των σύγχρονων επιστημών.

Το πρώτο βήμα προς τη μαθηματική διατύπωση της Κοσμολογίας, αποτέλεσε η διατύπωση
της Γενικής Θεωρίας της Σχετικότητας (ΓΣ) από τον ΄Αλμπερτ Αϊνστάιν το 1915 φέρνοντας την
επανάσταση στον τρόπο που αντιλαμβανόμαστε τις έννοεις του χώρου και του χρόνου. O Αϊν-
στάιν πρότεινε οτι ο χώρος και ο χρόνος είναι συνυφασμένοι σε μια κοινή οντότητα γνωστή ως

χωροχρόνος ή συνεχές, στην οποία η βαρύτητα αποτελεί μια γεωμετρική ιδιότητά της. Ειδικότερα,
συνειδητοποίησε ότι όσο βαρύτερο είναι ένα αντικείμενο, τόσο περισσότερο παραμορφώνει τον
χωροχρόνο γύρω του και ότι η καμπυλότητα του χωροχρόνου μπορεί να συνδεθεί άμεσα με την

ενέργεια και την ορμή ενός ρευστού, μέσα από ένα σύστημα μερικών διαφορικών εξισωσέων γνω-
στών ως Εξισώσεις του Βαρυτικού Πεδίου του Αϊνστάιν. Στις μέρες μας, η ΓΣ ειναι η ευρύτερα
αποδεκτή θεωρία βαρύτητας εξαιτίας της ικανότητάς της να κάνει ακριβείς προβλέψεις σε μια πλ-

ηθώρα βαρυτικών φαινομένων τα οποία η Νευτώνεια Θεωρία αποτυγχάνει να εξηγήσει, όπως για
παράδειγμα η γωνία μετάθεσης του περιηλίου του Ερμή [1], η οποία με βάση τη ΓΣ μετατίθεται
κατά περίπου 44 arcsec κάθε αιώνα, το φαινόμενο της καμπύλωσης των φωτεινών ακτίνων που
οφείλεται στη βαρύτητα του Ηλίου όπως αποδείχθηκε από τον Αρθουρ ΄Εντιγκντον το 1919 κατά
τη διάρκεια μια ηλιακής έκλειψης [2] κ.α. Επιπλεόν, η ΓΣ προβλέπει τόσο την ύπαρξη εξωτικών
αντικείμενων όπως οι μαύρες τρύπες [3–8] όσο και των βαρυτικών κυμάτων, η ύπαρξη των οποίων
επιβεβαιώθηκε πειραματικά πριν από μερικά χρόνια [9–11].

Η ανακάλυψη της ΓΣ αποτέλεσε ένα καθοριστικό βήμα προς τη διαμόρφωση του Καθιερωμέ-

νου Κοσμολογικού Προτύπου, το οποίο είναι ευρέως γνωστό ως “μοντέλο ΛCDM” (όπου το Λ
αντιστοιχεί στην Κοσμολογική Σταθερά ενώ το ακρώνυμο CDM στην Ψυχρή Σκοτεινή ΄Υλη) και
αντιστοιχεί στη μαθηματική παραμετροποίηση της Θεωρίας της Μεγάλης ΄Εκρηξης [12–14]. Η
συγκεκριμένη θεωρία εξηγεί με εξαιρετικά μεγάλη ακρίβεια, πως το Σύμπαν μας, πριν από περίπου
13.8 δισεκατομμύρια χρόνια διαστάλθηκε από μια αρχική απείρως θερμή και πυκνή ανωμαλία στο
Σύμπαν που παρατηρούμε σήμερα. Σύμφωνα, λοιπόν, με το μοντέλο ΛCDM, υπάρχουν τρία βασικά
συστατικά που απαρτίζουν το παρατηρούμενο Σύμπαν. Αυτά είναι:

• Η Βαρυονική ΄Υλη και η Ακτινοβολία: Η βαρυονική (ή συνηθισμένη ύλη) αντιστοιχεί στα
βαρυόνια και τα λεπτόνια, ενώ η ακτινοβολία περιγράφει σωματίδια με μηδενική μάζα ηρεμίας,
όπως είναι για παράδειγμα τα φωτόνια. Παραδόξως, μόνο ένα πολύ μικρό μέρος του Σύμ-
παντος (4%) αντιστοιχεί στην ορατή ύλη.
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Πρόλογος

• Η Σκοτεινή ΄Υλη: Η Σκοτεινή ΄Υλη αποτελεί περίπου το 22% του Σύμπαντος. Αν και

η Σκοτεινή ΄Υλη είναι μια καλά καθορισμένη ιδέα [15–18] και είναι εξαιρετικά μεγάλης
σημασίας για το μοντέλο ΛCDM, η πραγματική της φύση παραμένει μέχρι και σήμερα ένα
από τα μεγαλύτερα μυστήρια της Σύγχρονης Κοσμολογίας. Οι Κοσμολόγοι θεωρούν ότι
η Σκοτεινή ΄Υλη αντιστοιχεί σε ένα άγνωστο, μη σχετικιστικό, σταθερό σωματίδιο, που
αλληλεπιδρά μόνο βαρυτικά με τη συνηθισμένη ύλη. Ως πιθανές εξηγήσεις της Σκοτεινής
΄Υλης έχουν προταθεί μια πληθώρα εναλλακτικών θεωριών στη βιβλιογραφία, όπως για
παραδειγμα τα Weakly Interacting Massive Particles (Ασθενώς Αλληλεπιδρώντα Μαζικά
Σωματίδια) [19,20], ταMassive Astrophysical Compact Halo Objects (Μαζικά Συμπαγή Αν-
τικείμενα της ΄Αλω) [21,22], οι Primordial Black Holes (Αρχέγονες Μαύρες Τρύπες) [23–26],
ταQuantum Chromodynamics Axions (Kβαντικά Xρωμοδυναμικά Aξιόνια) [27,28], τα Neu-
tralinos [29], τα Strongly Interacting Massive Particles (Ισχυρά Αλληλεπιδρώντα Μαζικά
Σωμάτια) [30, 31] κ.α.

• Σκοτεινή Ενέργεια: Το υπόλοιπο 74% αποτελείται από μία ακόμα άγνωστη ποσότητα που
ονομάζεται “Σκοτεινή Ενέργεια” και παρουσιάζει αντιβαρυτικές ιδιότητες σε αντίθεση με
την βαρυονική ύλη ή την ακτινοβολία. Αυτή η μυστηριώδης μορφή ενέργειας είναι υπεύθυνη
για την παρατηρούμενη διαστολή του Σύμπαντος. Στo πλαίσιo του ΛCDM, η Σκοτεινή
Ενέργεια ταυτίζεται με την Κοσμολογική Σταθερά [32].

Η Κοσμολογική Σταθερά εισήχθη για πρώτη φορά από τον ΄Αλμπερτ Αϊνστάιν το 1917 [33],
σε μια προσπάθεια να επιτύχει ένα στατικό Σύμπαν, μία ιδέα που εκείνη την εποχή αποτελούσε
την επικρατούσα θεωρία για την περιγραφή του Σύμπαντος. ΄Ομως, λόγω των προβλημάτων
σταθερότητας που αντιμετώπιζε το συγκεκριμένο μοντέλο [34,35], καθώς και της παρατηρησιακής
επιβεβαίωσης από τον ΄Εντγουιν Χαμπλ ότι οι γαλαξίες απομακρύνονται μεταξύ τους [36], η ιδέα
εγκαταλείφθηκε περίπου δεκατέσσερα χρόνια αργότερα

4.

Παρόλα αυτά, η Κοσμολογική Σταθερά επανήλθε το 1998, όταν δύο διαφορετικές ερευνητικές
ομάδες, η ομάδα Supernova Cosmology Project [37] και η ομάδα High-Redshift Supernova Search
Team [38], επιβεβαίωσαν με τη χρήση δεδομένων Type Ia Supernovae (Υπερκαινοφανών Αστέρων
Τύπου Ia) ότι το Σύμπαν μας, πράγματι, επιταχύνεται5. Σήμερα, η Κοσμολογική Σταθερά θεω-
ρείται ως ο βασικός υποψήφιος για την εξήγηση της επιταχυνόμενης διαστολής καθιερώνοντας

στη βιβλιογραφία το “Καθιερωμένο Κοσμολογικό Πρότυπο” ως ΛCDM (το Λ αναφέρεται στην
Κοσμολογική Σταθερά, ενώ το ακρώνυμο CDM αντιστοιχεί στη Σκοτεινή ΄Υλη).

Από τότε, ένας μεγάλος αριθμός διαφορετικών αποστολών χρησιμοποιώντας εναλλακτικού
τύπου κοσμολογικά δεδομένα [όπως για παράδειγμα δεδομένα Cosmic Microwave Background
(Κοσμικής Ακτινοβολίας Υποβάθρου) [17,18,39], δεδομένα Type Ia Supernovae (Υπερκαινοφανών
Αστέρων Τύπου Ia) [40,41], δεδομένα Cosmic Chronometers (Κοσμικών Χρονομέτρων) [42–44],
δεδομένα Baryon Acoustic Oscillations (Βαρυονικών Ακουστικών Ταλαντώσεων) [45, 46], δε-
δομένα Redshift Space Distortions (Παραμορφώσεων στον Χώρο της Ερυθράς Μετατόπισης)
[18, 47, 48], δεδομένα Weak Lensing (Ασθενών Βαρυτικών Φακών) [49, 50], δεδομένα Cluster
Count (Αρίθμησης Σμηνών Γαλαξιών) [51–55] κ.α.] συγκλίνουν στην υπάρξη της Κοσμολογικής
Σταθεράς. ΄Ομως, το μοντέλο αυτό, παρά την απλότητα του και την πολύ καλή συμφωνία του

4
Ο ίδιος ο Αϊνστάιν χαρακτήρισε την εισαγωγή της Κοσμολογικής Σταθεράς ως “το μεγαλύτερο σφάλμα της

ζωής μου.”
5
Οι ερευνητές Adam Riess, Saul Perlmutter και Brian Schmidt κέρδισαν το 2011 το βραβείο Νόμπελ για την

συγκεκριμένη ανακάλυψη.
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με τα κοσμολογικά δεδομένα, παρουσιάζει ορισμένα προβλήματα τόσο σε θεωρητικό όσο και σε
παρατηρησιακό επίπεδο.

Τα θεωρητικά προβληματά του μοντέλου ΛCDM αποτελούν τα προβλήματα της κοσμολογικής
σταθεράς (cosmological constant problem) [56–60] καθώς και αυτό της σύμπτωσης (coincidence
problem) [61,62]. Το πρώτο αναφέρεται στην απόκλιση της πρόβλεψης της ενέργειας κενού ρΛ η

οποία προκύπτει από την Κβαντική Θεωρία Πεδίου με την παρατηρήσιμη τιμή της
6. Η απόκλιση

αυτή είναι περίπου 122 τάξεις μεγέθους και θεωρείται μία από τις χειρότερες θεωρητικές προβλέψεις
στην ιστορία της Σύγχρονης Φυσικής! Το δεύτερο πρόβλημα συνδέεται με το γεγονός ότι εαν
και η πυκνότητα ενέργειας της ύλης ρm εξελίσσεται αντιστρόφως ανάλογα της τρίτης δύναμης του
παράγοντα κλίμακας, στις μέρες μας είναι της ίδιας τάξης μεγέθους με την πυκνότητα ενέργειας
της Κοσμολογικής Σταθεράς ρΛ. Αυτό το πρόβλημα μπορούμε να το δούμε και ως ένα πρόβλημα
μιας λεπτομερούς ρύθμισης (fine-tuning problem), καθώς στο πλαίσιο του ΛCDM, η Κοσμολογική
Σταθερά θα πρέπει να κυριαρχεί κάποια συγκεκριμένη χρονική στιγμή ώστε να έχουμε ένα Σύμπαν

σαν το δικό μας, ένα Σύμπαν δηλαδή το οποίο βρίσκεται σήμερα σε μια περίοδο επιταχυνόμενης
διαστολής και παρουσιάζει δομές, όπως γαλαξίες και αστέρια [62]. Επομένως, ο λόγος ρm/ρΛ

πρέπει να έχει μία πολύ συγκεκριμένη τιμή για να συμβεί αυτό.

Από το 1998 και την επιβεβαίωση ότι το Σύμπαν μας βρίσκεται σε μία φάση επιταχυνόμενης δι-
αστολής, η ακρίβεια των κοσμολογικών παρατηρήσεων συνεχώς αυξάνεται, αποκαλύπτοντας έτσι
μια σειρά από “ασυμβατότητες” στο πλαίσιο του μοντέλου ΛCDM. Η ανίχνευση μιας “ασυμ-
βατότητας” για μία συγκεκριμένη παράμετρο σε κάποιο κοσμολογικό μοντέλο ισοδυναμεί με το
γεγονός ότι η εύρεση των βέλτιστων τιμών της συγκεκριμένης παραμέτρου με τη χρήση εναλλακ-

τικών μεθόδων διαφέρει σε στατιστικό επίπεδο μεγαλύτερο του 2σ. Η πιο σοβαρή παρατηρησι-
ακή ασυμβατότητα του μοντέλου ΛCDM αφορά την παράμετρο Hubble, καλείται “H0 ασυμ-

βατότητα” και βρίσκεται σε στατιστικό επίπεδο 5σ. Η ασυμβατότητα αυτή εμφανίζεται, όταν
συγκρίνουμε την τιμή της παραμέτρου Hubble που προκύπτει έμμεσα από δεδομένα Κοσμικής
Ακτινοβολίας Υποβάθρου και Βαρυονικών Ακουστικών Ταλαντώσεων με τη χρήση της inverse
distance ladder method (αντίστροφης μεθόδου κλίμακας-αποστάσεων) της αποστολής Planck
(H0 = 67.36 ± 0.54 km s−1 Mpc−1) [18] με την τιμή της που προκύπτει άμεσα από δεδομένα
Υπερκαινοφανών Αστέρων Τύπου Ia με τη χρήση της standard distance ladder method (μεθό-
δου κλίμακας-αποστάσεων) (H0 = 73.04 ± 1.04 km s−1 Mpc−1) [63]. ΄Ομως, η ασυμβατότητα
αυτή προσεγγίζει τα 6σ ανάλογα με τον συνδυασμό των τοπικών δεδομένων που χρησιμοποιούν-
ται [64,65]. Ακόμα μία ασυμβατότητα που αποκαλύφθηκε τα τελευταια χρόνια (η οποία όμως είναι
λιγότερο στατιστικά σημαντική) είναι η λεγόμενη “σ8 ή S8 ασυμβατότητα”. Αυτή η ασυμβατ-
ότητα αναφέρεται στην ασυνέπεια της τιμής της παραμέτρου του πλάτους του φάσματος ισχύος

κοσμικών δομών στην κλίμακα 8h−1 Mpc, σ8 ή/και της αδιάστατης παραμέτρου πυκνότητας της
ύλης Ωm,0. Συγκεκριμένα μετρήσεις με τη χρήση δεδομένων που αφορούν Παραμορφώσεις στο
Χώρο της Ερυθράς Μετατόπισης [66–74], δεδομένων Ασθενών Βαρυτικών Φακών [75–82] καθώς
και δεδομένων Αρίθμησης Σμηνών Γαλαξιών [17, 83, 84] ευνοούν χαμηλότερες τιμές για τις συγ-
κεκριμένες παραμέτρους από τις τιμές που αναφέρει η αποστολή του Planck. H “σ8 ασυμβατότητα”
βρίσκεται σε στατιστικό επίπεδο 2σ − 3σ αλλά προσεγγίζει τα 5σ, όταν χρησιμοποιούνται τα EG
δεδομένα [85]. Για περισσότερες λεπτομέρειες σχετικά με τα βασικά προβλήματα που αντιμετωπίζει
το μοντέλο ΛCDM, ο αναγνώστης μπορεί να ανατρέξει στις ακόλουθες αναφορές [73, 86–94].

Ορμώμενοι από αυτές τις δυσκολίες, οι Κοσμολόγοι ερευνούν τόσο τις κοσμολογικές όσο και
τις κλίμακες χιλιοστού για πιθανές ενδείξεις ύπαρξης μιας πληρέστερης θεωρίας βαρύτητας η οποία

6
Η Κοσμολογική Σταθερά και η ενέργεια του κενού παρουσιάζουν την ίδια δυναμική συμπεριφορά στα πλαίσια

της ΓΣ, οπότε σε μια πρώτη προσέγγιση, η υπόθεση οτι οι δύο αυτές έννοιες ταυτίζονται είναι εύλογη.
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να εξηγεί τα προβλήματα αυτά με έναν πιο θεμελιώδη τρόπο. Αυτή η αναζήτηση έχει οδηγήσει
τα τελευταία χρόνια στη διατύπωση πολλών θεωριών, οι οποίες αποτελούν επεκτάσεις του μον-
τέλου ΛCDM και έχουν ως σκοπό την πιθανή επίλυση αυτών των προβλημάτων. Αυτές οι προ-
τεινόμενες επεκτάσεις/λύσεις μπορεί να περιλαμβάνουν την ανθρωπική αρχή [95–98], δυναμικά εξ-
ελισσόμενα μοντέλα σκοτεινής ενέργειας στα οποία η πυκνότητα ενέργειας της κοσμολογικής στα-

θεράς προάγεται σε μια πυκνότητα ενεργειας σκοτεινής ενέργειας ρDE και παρουσιάζει δυναμική
εξέλιξη [99–105], μοντέλα κλιμακωτού μεταβολλόμενου κενού, στα οποία η πυκνότητα ενέργειας
του κενού είναι μία χρονικά εξαρτώμενη ποσότητα [106–114], θεωρίες στις οποίες τον ρόλο της
σκοτεινής ενέργειας παίζει ένα βαθμωτό πεδίο [όπως για παράδειγμα στις θεωρίες πεμπτουσίας
(quintessence dark energy models) [115–130], στις θεωρίες phantom, στις οποίες το βαθμωτό
πεδίο έχει αρνητικό πρόσημο στον κινητικό όρο (phantom dark energy models) [131–136], θεω-
ρίες k-essence, στις οποίες εμφανίζονται βαθμωτά πεδία με γενικευμένους κινητικούς όρους (k-
essence dark energy models) [137, 138], στις βαθμοτανυστικές θεωρίες πεμπτουσίας (scalar ten-
sor theories) [139–150] κ.α.], κάποιου είδους τέλειου ρευστού (όπως για παράδειγμα το μον-
τέλο chaplygin [151–155]), τροποποιημένες θεωρίες βαρύτητας στις οποίες η δράση του μον-
τέλου ΛCDM μεταβάλλεται με την εισαγωγή επιπλέον όρων (οι οποίοι μπορεί να εξαρτώνται
από το βαθμωτό Ricci R [156–180] ή τη στρέψη T [181–190] κ.α.) ή και ακόμα πιο περίπλοκες
τροποποιήσεις, όπως για παράδειγμα θεωρίες στις οποίες εισάγονται έξτρα διαστάσεις [191–193],
μοντέλα μεμβρανών [194–202], μοντέλα τύπου Brans Dicke [203], μοντέλα στα οποία η Σκοτεινή
Ενέργεια και η Σκοτεινή ΄Υλη αλληλεπιδρούν (interacting dark energy with dark matter mod-
els) [204–211], μοντέλα στα οποία η Σκοτεινή ΄Υλη αλληλεπιδρά με νετρίνα (interacting dark
matter with neutrinos) [212], μοντέλα ολογραφικής Σκοτεινής Ενέργειας (holographic dark
energy models) [213–216], μονέλα πρώιμης σκοτεινη ενεργειας (early dark energy) [217–223],
μοντέλα διασπώμενης Σκοτεινής ΄Υλης (decaying dark matter) [224], μοντέλα με τοπολογικές
ατέλειες [225–227], μοντέλα αρχέγονων μαύρων τρυπών που εξαφανίζονται (evaporating primor-
dial black holes) [228], μοντέλα εξωτικής σκοτεινής ενέργειας (exotic dark energy) [229–243]
κ.α.
Αυτός ακριβώς είναι και ο στόχος της παρούσας Διδακτορικής Διατριβής. Να συνεισφέρει σε

αυτη τη μακροπρόθεσμη προσπάθεια ανίχνευσης μιας πλήρους θεωρίας βαρύτητας, επικεντρωνό-
μενη στα βασικά παρατηρησιακά προβλήματα του μοντέλου ΛCDM και ερευνώντας ορισμένα από
τα εναλλακτικά μοντέλα που έχουν αναφερθεί παραπάνω, να ταυτοποιήσει πιθανές παρατηρησιακές
τους προβλέψεις.
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Chapter 1
Introduction

1.1 Mathematical Formulation of ΛCDM

1.1.1 Cosmological Principle

A key concept of General Theory of Relativity (GR) is the Cosmological Principle which
postulates that even though at small scales the Universe contains structures, at large scales,
i.e. scales greater than 100 Mpc, the Universe is actually homogeneous and isotropic. This
means that two different observers independently on which point or which direction they are
looking, they are going to receive the same observational evidence. The Cosmological Principle
is a generalization of the Copernican Principle which was a basic assumption of the Copernican
heliocentrism model that was first developed by Nicolaus Copernicus in 1543 [244] and states
that there are no privileged observers on the Universe.
Τhe Cosmological Principle is currently under intense investigation using a variety of differ-

ent cosmological data [245–259], however up to date, no conclusive evidence against the Cosmo-
logical Principle have been provided. The concept of a homogeneous and isotropic spacetime,
is incorporated in the context of ΛCDM through the so called Friedmann-Lemaitre-Robertson-
Walker metric which we will discuss later on in this chapter. However, if the Cosmological
Principle is indeed violated, then the concept of homogeneity is also violated. Therefore, the
observed accelerated expansion of the Universe is not due to a mysterious component such as
dark energy as we discussed earlier, but it can be due to a local underdense region that dwindles
at large scales [260–267].

The idea that we currently live in an underdense region could also, in principle, explain the
observed H0 tension in a more generic manner, since locally we would measure an H0 value
that is higher than the true H0 measured globally. However, the scale and depth needed for
this cosmic variance seems to be strongly disfavored by current observations [268–275]. Even
so, in the last couple of years some groups presented evidence of a local underdensity of a few
Mpc (which is approximately three order of magnitudes smaller than the Gpc scale required
to fully resolve the H0 tension) using different galaxy survey catalogues such as the 2 Micron
All Sky Survey catalogue [276, 277], the UKIRT Infrared Deep Sky Large Area Survey [278]
as well as galaxy samples galaxies samples created by the 6-degree Field Galaxy, Sloan Digital
Sky and Galaxy and Mass Assembly surveys [279, 280]. Furthermore, there have been reports
studying the latest Type Ia Supernovae dataset that is publicly available (Pantheon) [281–285]
and a sample of galaxy X-ray galaxy clusters [286] that stress that a local underdensity should
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Chapter 1. Introduction

not yet excluded.
Clearly, even though the concept of the Cosmological Principle is currently under debate,

the idea that we live in an isotropic and homogeneous Universe remains arguably the most
popular until today, since no vividly evidence against it have been discovered.

1.1.2 Metric and Energy Momentum Tensor

Einstein’s goal was to formulate an equation that connected the energy and matter distribu-
tion of spacetime to its geometry. The concept of geometry is embodied in the metric described
by the symmetric second rank tensor gµν . A metric tensor is the most important tensor that
can be defined on a manifold, since it allows the transformation of the observer dependent
coordinate distance to be transformed into physical distance. The invariant line element in the
context of GR is defined as

ds2 = gµνdx
µdxν , (1.1)

where xµ = (x0, x1, x2, x3) = (ct, ~x). Clearly, this is a rather tedious situation however it can
be drastically simplified by imposing the aforementioned symmetry as well as the cosmological
principle. In this case, the line element in spherical coordinates is written as

ds2 = (c dt)2 − a2(t)

[
dr2

1− k r2
+ r2(dθ2 + sin2 θ dφ2)

]
, (1.2)

where a(t) corresponds to the scale factor which is determined by solving the Einstein’s Field
Equations and k to the spatial curvature, a constant parameter that determines the geometry
of the studied Universe. This spacetime is known as Friedmann-Lemaitre-Robertson-Walker
(FLRW) [287].

The spatial curvature k is a constant parameter, independent of the selected coordinates
that its exact value is irrelevant since it can be normalized by a redefinition of the scale factor
a(t) and of the radial distance coordinate r. So, the spatial curvature has the following three
eligible values describing three different geometries for the Universe. For k = 0 a flat Universe
is represented, for k = 1 a closed Universe is described, while the value k = −1 correspond to
an open Universe. The associated topological geometries are illustrated below

Figure 1.1: The three different geometric manifolds for zero, positive and negative spatial
curvature. From Ref. [288].

Furthermore, in order to be able to resolve the Einstein’s Field Equations the representation
of the energy distribution at large scales in the context of GR is needed. This problem was first

2



1.1. Mathematical Formulation of ΛCDM

studied by Herman Weyl in 1923 [289]. Using the Cosmological Principle, Weyl proposed that
the Universe contains a uniform substratum with a four-velocity uµ and that its contents, i.e.
the galaxies, behave like “particles” inside a perfect fluid. Each point of the fluid is characterized
by a density ρ and a pressure p and the relative velocities of the “particles” that move inside
the substratum can be ignored. Despite the fact that this is not a perfect assumption, this
hypothesis can be adopted in the context of GR, since the relative velocities of the galaxies
are much smaller compared to the cosmic expansion. Therefore, the second rank tensor that
describes the matter and energy distribution of the Universe is of the following form [287]

Tµν = (ρ+ p)uµuν − p gµν . (1.3)

Eq. (1.3) defines another extremely useful quantity, the energy momentum tensor. Obviously,
since this tensor describes the energy it should also obey a conservation law.

However, we can not simply use the partial derivative as usual. In the context of GR a
new symbol is defined and the conservation law for the energy momentum tensor is written as
∇µTµν = 0. The partial derivative in this case is generalized to the covariant derivative, which
for a vector Aν takes the following form

∇µAν ≡ ∂µAν + Γλµν Aλ , (1.4)

while for a vector Aν it is written as

∇µA
ν ≡ ∂µA

ν − ΓνµλA
λ . (1.5)

In Eqs. (1.4) and (1.5) the Γλµν symbols correspond to the well known Christoffel symbols which
are defined as

Γρµν ≡
1

2
gλρ (∂µgλν + ∂νgλµ − ∂λgµν) (1.6)

1.1.3 Einstein’s Field Equations

Armed with the results of the previous section, we are ready to compute the famous Einstein’s
Field Equations. Since the Newtonian gravity should be included in GR, Einstein realized that
the basic step towards a mathematical formulation was to supersede the Poisson’s law. Poisson’s
law for a gravitational potential φ(r) is given by

∇2φ(r) = 4π GN ρ , (1.7)

where GN corresponds to Newton’s constant and ρ is the mass density. So, in order to generalize
this equation to the GR corresponding one we need to understand its characteristics. On the
left hand side of Eq. (1.7) there is a second order differential operator which acts upon the
gravitational field, while on the right hand side we have a measure of the mass distribution.
The right hand side of Eq. (1.7) is generalized easily to the energy momentum tensor. However,
things are a little more complicated regarding the left hand side. For its generalization, a tensor
with second order derivatives of gµν is needed. The obvious answer would be the Riemann’s
curvature tensor, which is defined as

Rρ
σµν ≡ ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ , (1.8)
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Chapter 1. Introduction

but unfortunately it is not of the same rank as the energy momentum tensor Tµν . On the
contrary, the Ricci tensor that is derived by contracting two indices, is of the correct order, i.e.
of the same order as the energy momentum tensor. The Ricci tensor is defined as

Rµν ≡ gλρRλµρν = Rρ
µρν = ∂ρΓ

ρ
µν − ∂µΓρρν + ΓρρλΓ

λ
µν − ΓρµλΓ

λ
ρν (1.9)

and based on (1.9), the Ricci scalar can be defined

R = gµνRµν . (1.10)

At a certain point, Einstein did consider that the correct gravitational field equations are

Rµν = κTµν , (1.11)

where κ ≡ (8πGN)/c4 is a constant. But, taking into account the conservation of energy, Eq.
(1.11) faces severe problems. Even though the energy momentum tensor obeys the relation
∇µTµν = 0, this is not true for Rµν considering an arbitrary geometry, breaking as a result the
equality. Therefore, Einstein constructed the following tensor

Gµν ≡ Rµν −
1

2
gµνR , (1.12)

proved that ∇µGµν = 0 [287] based on the Bianchi identity and showed that the correct
gravitational field equations are (for c = 1) [287]

Gµν = 8πGNTµν . (1.13)

The constant κ was chosen by Einstein so at the limit of the weak gravitational field the above
equation leads to the Poisson law (1.7) as expected.

A more mathematical way to obtain the Einstein’s Field Equations (1.13), is by applying
the stationary action principle in the full Einstein-Hilbert action. Even though this approach
is trivial for the full Einstein-Hilbert action, it is extremely useful in more complicated actions.
The action consists of two terms, one that incorporates the geometry and one that describes
the matter fields of the theory and is of the following form

SEH =

∫
d4x
√
−g
[

1

2κ
R + Lmatter

]
, (1.14)

where g ≡ det(gµν) is the determinant of the metric tensor matrix. Following the stationary
action principle, we demand that the variation of the action with respect to the inverse metric
is zero for any δgµν , so it is straightforward to obtain the following equation

δSEH
δgµν

= 0⇒ δR

δgµν
+

R√
−g

δ
√
−g

δgµν
= − 2κ√

−g
δ (Lmatter

√
−g)

δgµν
, (1.15)

The right hand side of (1.15) is by definition the energy momentum tensor multiplied by κ.
Regarding the left hand side of (1.15) using the fact that

δR

δgµν
= Rµν , (1.16)

δ
(√
−g
)

= −1

2

√
−ggµνδgµν , (1.17)

then Eq. (1.15) reduces to

Rµν −
1

2
gµνR = κTµν

c=1
==⇒ Gµν = 8πGN Tµν ,

i.e. the Einstein’s Field Equations (1.13).
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1.1. Mathematical Formulation of ΛCDM

1.1.4 Friedmann Equations

The Einstein’s Field Equations may be used to relate the evolution of the scale factor a(t)
with the pressure and energy of the matter for a plethora of different gravitational systems.
So, a basic question that arises is the following: “Can we achieve an exact solution of the
Einstein’s Field Equations for our Universe?” As we discussed earlier our Universe at large
scales is homogeneous and isotropic, so the metric that incorporates both of these concepts is
the FLRW metric with (1.2) as the line element.

For the FLRW metric the non-zero components of the metric are

g00 = c2 = 1, g11 = − a2

1− kr2
, g22 = −a2r2, g33 = −a2r2 sin2 θ ,

leading to the following non-zero Christoffel symbols

Γ0
11 =

aȧ

1− kr2
, Γ0

22 = aȧr2, Γ0
33 = aȧr2 sin2 θ ,

Γ1
11 =

kr

1− kr2
, Γ1

22 = −r(1− kr2), Γ1
33 = −r sin2 θ(1− kr2) ,

Γ1
01 = Γ2

02 =
ȧ

a
, Γ3

03 =
ȧ

a
, Γ2

12 =
1

r
,

Γ3
13 =

1

r
, Γ2

33 = − sin θ cos θ, Γ3
23 =

cos θ

sin θ
,

where the dot represents derivation with respect to time. Armed with the non-vanishing
Christoffel symbols, the Ricci scalar (1.9) can be computed immediately as

R = gµνRµν = g00R00 + g11R11 + g22R22 + g33R33 ⇒ R = −6
( ä
a

+
ȧ2

a2
+
k

a2

)
. (1.18)

Now using the definitions (1.3) and (1.13) we can calculate the non-zero components of the
Einstein Field Equations. The (00)-component gives [287]

G00 = 8πGN T00 ⇒
(
ȧ

a

)2

=
8πGN

3
ρ− k

a2
, (1.19)

an equation that is known as the Friedmann equation that connects the geometry with the
density ρ and the spatial curvature k. The spatial components (ii) give

2
ä

a
+
ȧ2

a2
+
k

a2
= −8πGN p . (1.20)

Usually, Eq. (1.20) is not used in its current form, but we substitute the second term with
(1.19), yielding [287]

ä

a
= −4πGN

3
(ρ+ 3p) . (1.21)

This equation is known as the Raychaudhuri equation or the acceleration equation since it
includes the second derivative of the scale factor a(t). The minus sign of this equation is of
paramount significance, since for ρ > 0 and p > 0 (ordinary matter), the right hand side of
(1.21) is always negative, leading to a deceleration of the expansion. However, as we discussed
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earlier, current observations confirmed that the Universe nowadays is actually accelerating.
Therefore, we can either completely omit (1.21)1 or consider a mysterious component (such as
the cosmological constant) with negative pressure.

So far we have two differential equations with three unknown functions, the scale factor
a(t), the density ρ(t) and the pressure p(t) that depend on time. Therefore, in order to be able
to solve the differential system another equation is needed. Naively, one could think that this
equation is the continuity equation which is the following [287]

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 . (1.22)

However, (1.22) is derivable from Eqs. (1.19) and (1.21) by differentiating the first one with
respect to time and substituting the ä from the Raychaudhuri equation2. So, the needed
equation is none other than the equation of state [287]

p = w ρ , (1.23)

where the proportionality factor w can be constant or it can be a function of time. Typically,
Eqs. (1.19) and (1.21) are expressed in terms of the Hubble rate H ≡ ȧ

a
and its first derivative.

In this case, the Friedmann equation takes the form [287,290]

H2 =
8πGN

3
ρ− k

a2
, (1.24)

while the Raychaudhuri equation is written as [287,290]

Ḣ +H2 = −4πGN

3
(ρ+ 3p) (1.25)

1.1.5 Cosmological Constant and ΛCDM

Several decades ago, when Einstein was formulating GR, the Universe was though to be static,
infinite and mainly composed of matter. This was a valid assumption, since at that time it
was not even clear that galaxies outside our own Milky Way existed. Therefore, the Friedmann
equations presented in the previous subsection need to be modified since they can not provide
a static solution. This belief severely puzzled many scientists as well as Einstein himself. In
an attempt to “solve” this problem, Einstein proposed the cosmological constant in 1917 [33].
Einstein decided to modify his original field equations (1.13) by adding a small constant term
Λ multiplied by the metric tensor, slightly modifying the geometry of the Universe as [287,290]

Gµν − Λ gµν = 8πGN Tµν , (1.26)

This extra term preserves the symmetry of GR since it is a small Lorentz invariant term that
affects the Friedmann equations. Eqs. (1.24) and (1.25) with the addition of the cosmological
constant take the form [32,287,290,291]

H2 =
8πGN

3
ρ− k

a2
+

Λ

3
, (1.27)

Ḣ +H2 = −4πGN

3
(ρ+ 3p) +

Λ

3
. (1.28)

1In this context, GR should be modified to a new more complete theory at cosmological scales that includes
as a limit GR.

2The continuity equation can also be derived using the conservation of the energy momentum tensor∇µTµν =
0.
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Einstein showed that the value of Λ needed to cancel the attractive gravitational force of matter
was Λ = 4π GN ρm. This model is known as the “Einstein’s Static Universe Model”.

However, this particular model suffers from serious stability issues as it was proven later
on [34,35]. The final blow for Einstein’s Static Universe Model was given by Edwin Hubble in
1929 [36]. Edwin Hubble after years of observing distant galaxies, confirmed that they stray
from us, with a velocity u proportional to each object’s distance d, leading to the relation

u = H0 · d . (1.29)

Eq. (1.29) is known as the Hubble law and provided the first estimate of the Hubble parameter
H0 as the slope of the diagram. The corresponding value obtained was H0 = 500 kms−1Mpc−1.
The diagram was presented in [36] is known as Hubble diagram and is illustrated in Fig. 1.2.

Figure 1.2: The famous Hubble diagram presented in Ref. [36] that illustrates the velocity of
distant galaxies as a function of the distance. The dots represent the solution for solar motion
using the galaxies separately, while the circles represent the solution mixing the galaxies in
groups.

The first confirmation that the Universe is indeed accelerating naturally shocked the scientific
world. This discovery forced Einstein to completely abandon the idea of the cosmological
constant and that of a static Universe. In the following years, the considered models that
attempted to explain the accelerated expansion of the Universe considered the cosmological
constant to be equal to zero.

However, the concept of cosmological constant was resurrected for good in 1998. The
Supernova Cosmology Project [37] and the High-Redshift Supernova Search Team [38] using
Type Ia Supernovae (SnIa) proved independently, that the Universe is indeed accelerating as it
is illustrated in Fig. 1.3. Nowadays, the concept of the accelerated expansion is encoded to a
repulsive force that exhibits properties of anti-gravity that opposes the self-attraction of matter
and dilutes much more slowly than matter as the Universe expands. This mysterious quantity
is called dark energy, and the prime candidate is considered to be the cosmological constant. In

7



Chapter 1. Introduction

Figure 1.3: The measured magnitude as a function of redshift. The red lines represent different
models with zero cosmological constant and mass densities from the critical density ρcrit to
zero. The blue line corresponds to a non-zero cosmological constant with a mass density ρcrit/3
implying an accelerating expansion. The yellow, orange and black points correspond to the
SnIa presented in Refs. [37,38,292] respectively. From Ref. [293].

the following years, a plethora of independent observations have provided evidence supporting
the existence of cosmological constant establishing the current standard model of cosmology
to be the ΛCDM model that has Eqs. (1.27) and (1.28) as background equations3. In the
context of ΛCDM, the cosmological constant has a constant energy density of the following
form [32,290,291]

ρΛ = −pΛ =
Λ

8 π GN

, (1.30)

where pΛ corresponds to the pressure of the cosmological constant and c = 1. Eq. (1.30) leads
to a constant equation of state parameter [32,290,291]

wΛ =
pΛ

ρΛ

= −1 . (1.31)

Nevertheless, the job is far from done. Despite the simplicity of the model and the excellent
fit provided by the data, ΛCDM faces a series of challenges at both the theoretical and the
observational level that will be discussed later on leading scientists to search for a more complete
theory of gravity that is free of such problems.

3In the acronym ΛCDM, Λ stands for the cosmological constant, while CDM describes the cold dark matter
described in the Preface.
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1.2. Cosmological Observables

1.2 Cosmological Observables

1.2.1 Cosmological Redshift

Before proceeding to the main challenges of ΛCDM let us make a small detour to review
some useful and important observables in Cosmology that will be extensively used throughout
the present thesis. The first concept that we will discuss is that of the redshift. Redshift is
an elementary quantity for Cosmology and can be directly associated with the emitted and
received photons from an astrophysical object. Suppose that we have a photon that is emitted
at a time tE and is received at a time tR. Using the FLRW metric (1.2), we set for the photon
ds2 = 0 and after an integration we derive [290]∫ tR

tE

c dt

a(t)
= −

∫ 0

rE

dr√
1− k r2

, (1.32)

where rE corresponds to the radial distance of the source. Now, if the emitter sends another
photon at a time tE + δtE and this photon is received at a time tR + δtR, then, since the two
photons need to cover the same radial distance, we have [290]∫ tR

tE

c dt

a(t)
= −

∫ 0

rE

dr√
1− k r2

=

∫ tR+δtR

tE+δtE

c dt

a(t)
. (1.33)

Omitting the middle part of (1.33) and considering that δtE and δtR are small so that a(t) can
assumed to be constant, we deduce that

δtE
a(tE)

=
δtR
a(tR)

. (1.34)

Furthermore, considering the light pulses to be successives of an electromagnetic wave, we
derive for the redshift z that

1 + z ≡ δtR
δtE

=
a(tR)

a(tE)
. (1.35)

Usually, we neglect the subscripts R and E and consider that tR corresponds to the present
time t0. So, setting a(t0) = 1 as usual, (1.35) reduces to

a(t) =
1

1 + z
(1.36)

1.2.2 Geometrical and Dynamical Probes

It is known that the observed accelerated expansion of the Universe is attributed to a
mysterious component dubbed dark energy. This dark energy can be due to the existence of a
cosmological constant or it can emerge in the context of some more complete theory of gravity.
Both of these possibilities leave some characteristic predictions on specific parameters that can
be probed using different cosmological data that allow to compare different theories. In general,
these probes can be divided [73,294–296] in the following two broad categories:

• Geometric Probes: The geometric probes refer to cosmological data that probe directly
the cosmic metric through cosmological distances, i.e. independently of the underlying
theory. Examples of such probes include the luminosity distance, the angular diameter
distance, the scale of the sound horizon, the cluster gas mass fraction etc.

9
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• Dynamical Probes: The dynamical probes refer to cosmological data that probe at the
same time the metric as well as the growth rate of cosmological perturbations in the
linear and nonlinear regime. An example of a dynamical probe includes the linear matter
overdensity growth factor.

In the present thesis, we will study a variety of different cosmological data that belong to both
categories, so it would be useful to be more thorough with the examples that were discussed
above.

First, let us clarify the concept of distance in Cosmology. Distances are extremely useful in
order to study the scale factor a(t) using distant cosmological objects. In Cosmology we can
identify the following two basic types of distances:

• Physical Distance d: The physical (or proper) distance d corresponds to the distance
between two cosmological objects which could theoretically be measured using a ruler at
a constant cosmological time. The concept of this distance is of course theoretical, since
we can not freeze the expansion at the time of the measurement.

• Comoving Distance χ: The comoving distance χ is a distance expressed in comoving
coordinates and it is by definition fixed at all times. We can associate the physical
distance d with the comoving distance χ through the following equation

d = a(t)χ . (1.37)

Clearly, if we measure the physical distance at the present time t0, then the two distances
coincide since we can set a(t0) = 1.

Using the definition of the comoving distance, we can write an alternative form for the
FLRW metric (1.2). Introducing the following variable

r ≡ S(χ) =


sinχ, for k = +1,

χ, for k = 0,

sinhχ, for k = −1 ,

(1.38)

we can easily redefine the FLRW metric as [297]

ds2 = (c dt)2 − a2(t)
[
dχ2 + S2(χ)

(
dθ2 + sin2 θ dφ2

)]
. (1.39)

For example for k = +1, the r coordinate is redefined as r = sinχ leading the spatial part of
the invariant line element ds2 to take the form

dσ2 = dχ2 + sin2 χ(dθ2 + sin2 θ dφ2) , (1.40)

which corresponds to the metric of a three dimensional sphere. So how can we associate the
comoving distance with the scale factor a(t)? In any universe with a FLRW metric (such as
ours) we derive the comoving distance to be

χ = c

∫ t0

tE

dt

a(t)
= c

∫ t0

tE

1

a

dt

da
da = c

∫ a(t0)

a(tE)

1

a

1

ȧ
da

c=1
=====⇒
a(t0)=1

χ =

∫ z

0

dz′

H(z′)
. (1.41)

10
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Figure 1.4: A graphic representation of the luminosity distance dL of a distant astrophysical
object.

Even though we can directly associate the comoving distance with the geometry through H(z),
the comoving distance is also a non observable quantity. Therefore, we are obligated to define
two new quantities in terms of the comoving distance χ and then identify the geometry of the
Universe through H(z). These new observables are the luminosity distance dL and the angular
diameter distance dA.

Suppose that we have an astrophysical distant object, such as a SnIa, that has a known
intrinsic luminosity L which is constant in a spherical shell of radius dL as it is demonstrated in
Fig. 1.4. Measuring its flux f , we can define the luminosity distance dL through the following
relation [290,298,299]

f =
L

4π d2
L

. (1.42)

In a static Euclidean Universe, the luminosity distance would coincide with the actual dis-
tance from the astrophysical object. However, we know that we live in an expanding Universe
described by the FLRW metric (1.38) [or equivalently (1.2)]. In this case, the energy of the

incoming photons from the astrophysical object is reduced by a factor a(t0)
a(t)

[290, 298, 299], so
the flux f is written as

f =
L

4π a2(t0)S2(χ) (1 + z)2

a(t0)=1
=====⇒ f =

L

4 π S2(χ) (1 + z)2
. (1.43)

Comparing (1.42) with (1.43), we easily derive that in the context of an expanding Universe,
the luminosity distance is

dL = S(χ) (1 + z) =


(1 + z) sinχ, for k = +1,

(1 + z)χ, for k = 0,

(1 + z) sinhχ, for k = −1

(1.44)

where χ is given by (1.41).
Concerning the angular diameter distance dA, we consider a distant astrophysical object

with a known proper diameter l. Assuming that the studied object is perpendicular to the line

11
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Figure 1.5: A graphic representation of the angular diameter distance dA of a distant astro-
physical object.

of sight as it is illustrated in Fig. 1.5, we can define that in a Euclidean space for small angles,
the angular diameter distance is given by [290,298,299]

dA ≡
l

∆θ
. (1.45)

For the angular part of the FLRW metric we know that l = a(tE)S(χ) ∆θ [290], so using Eq.
(1.35), the definition (1.45) is written as

dA = a(tE)S(χ) = a(t0)
a(tE)

a(t0)
S(χ) = a(t0)

S(χ)

1 + z

a(t0)=1
=====⇒ dA =

S(χ)

1 + z
. (1.46)

From (1.44) and (1.46) we can easily extract the relation that connects dL with dA which is
known as the distance duality relation and has the following form

dL = (1 + z)2 dA . (1.47)

Clearly, since both the luminosity distance dL and the angular diameter distance dA depend on
the comoving distance S(χ) they will differ for different cosmological models. Therefore, both
of these distance are extremely helpful (geometrical) probes to identify the correct geometry of
the Universe.

Regarding the dynamical probes, we focus on the linear matter overdensity growth factor.
The linear matter growth factor is defined as

δ ≡ δρm
ρm

, (1.48)

with ρm describing the matter density and δρm corresponding to its first order perturbation.
In the context of GR as well as in the majority of modified gravity theories, the evolution of
the linear matter growth factor is given as [68,172,300–303]

δ̈ + 2Hδ̇ − 4πGeff ρm δ ≈ 0 (1.49)

where Geff is the effective Newton’s constant, that for the GR case reduces to the usual Newton’s
constant GN and in modified theories of gravity, it may depend on both the scale factor a and
the scale k. In terms of the scale factor, Eq. (1.49) takes the following form

δ′′(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′(a)− 3

2

Ωm,0 Geff(a, k)/GN

a5H2(a)/H2
0

δ(a) = 0 , (1.50)
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where primes denote differentiation with respect to a and Ωm,0 is the present value of the matter
density parameter which we will discuss in detail in the following subsection. It is important to
note that in Eq. (1.50) we neglect the neutrinos as well as the dark energy perturbations and
that this equation is only valid on subhorizon scales. The effective Newton’s constant emerges
from generalizing Poisson’s equation as [146,147]

∇2φ ≈ 4πGeffρm δ , (1.51)

where φ is the perturbed metric potential in the Newtonian gauge defined via the perturbed
FLRW metric [147,304,305]

ds2 = (1 + 2ψ)dt2 − a2(1− 2φ)d~x 2 (1.52)

and φ, ψ are referred as Bardeen potentials [305]. Therefore, given a background H(a), the
matter density parameter Ωm,0 and a parametrization for Geff(a, k)/GN, Eq. (1.50) can be
solved either numerically or analytically and construct the theoretical prediction for the growth
factor δ. Using the linear matter growth factor δ, the growth rate of perturbations

f(a) ≡ dlnδ(a)

dlna
, (1.53)

which can be used for the construction of the product

fσ8(a) ≡ f(a) · σ(a) =
σ8

δ(1)
a δ′(a) , (1.54)

where σ8 is the density rms fluctuations within spheres of radius on scales of about 8h−1Mpc.
This product is reported by various independent surveys that probe the growth rate of cosmo-
logical perturbations, so we have an immediate comparison between observations with different
cosmological models.

1.3 Cosmological Models and Age of the Universe

The Friedmann equations (1.27) and (1.28) constitute a major tool, since they can be used
for a large variety of cosmological models. Depending on the studied cosmological model, the
Friedmann equations take different forms, leading to different solutions for the scale factor a(t).
The quantities that appear in Friedmann equations, ρ and p correspond in reality, to the total
energy density and pressure. Hence, they can be written as sums of the contributions of the
individual components as follows

ρ ≡ ρtotal =
∑
i

ρi, p ≡ ptotal =
∑
i

pi . (1.55)

In this case, we can solve the continuity equation (1.22) for each individual contribution

ρ̇+ 3
ȧ

a
(ρ+ p) = 0⇒ ρ̇i + 3

ȧ

a
(ρi + pi) = 0

(1.23)
===⇒ ρ̇i = −3

ȧ

a
ρi(1 + wi)⇒

dρi
ρi

= −3

a
da (1 + wi)

∫
=⇒ ρi(a) = ρi,0

(a0

a

)3(1+wi)

, (1.56)
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where ρi,0 describes the current density of each individual component and the sum symbols are
neglected. As we know the basic ingredients of our Universe are the ordinary matter for which
w = 0, the radiation for which w = 1/3 and if the dark energy corresponds to cosmological
constant then w = −1. Therefore (1.56) for each case is written as

ρ =


ρm,0

(
a0

a

)3
, for matter

ρr,0
(
a0

a

)4
, for radiation

ρΛ,0

(
a0

a

)0 ≡ ρΛ, for cosmological constant.

(1.57)

Usually, the Friedmann equation (1.27) is expressed using dimensionless quantities that are
called density parameters. Defining the critical density ρcrit,0, i.e. the energy density of the
cosmic fluid in a flat Universe, as

ρcrit,0 =
3H2

0

8π GN

,

we can define the density parameters for each individual component via

Ωi,0 ≡
ρi,0
ρcrit,0

=
8 π GN

3H2
0

ρi,0 . (1.58)

Then, Eq. (1.27) (for c = 1) takes the form

H2 =
8πGN

3
ρ− k

a2
+

Λ

3

(1.30)
===⇒ H2 =

8πGN

3
(ρ+ ρΛ)− k

a2
⇒ H2 = H2

0

[
Ωr,0

(a0

a

)4

+

+Ωm,0

(a0

a

)3

+ Ωk,0

(a0

a

)2

+ ΩΛ,0

]
a0=1
===⇒ H2 = H2

0

[
Ωr,0 a

−4 + Ωm,0 a
−3 + Ωk,0 a

−2 + ΩΛ,0

]
,

(1.59)

where we introduce the so called curvature density Ωk,0 ≡ −k/(a0H0)2. The density parameters
at present time obey the following relation

Ωr,0 + Ωr,0 + Ωk,0 + ΩΛ,0 = 1 . (1.60)

The last two equations are extremely useful in Cosmology, since they can be used in order
to calculate the form of the scale factor a(t). In complicated systems the form of a(t) is
calculated numerically, but there is a number of special cases for specific values of the density
parameters Ωi,0 for which a(t) can be solved analytically through Eq. (1.59). In general, we
can divide the cosmological models in two broad categories. The ones where the contribution
of the cosmological constant is zero (ΩΛ,0 = 0) which are called Friedmann models and the ones
with a non-zero cosmological constant (ΩΛ,0 6= 0) that are known as Lemaitre models.

1.3.1 Friedmann Models

All the Friedmann models have a big bang singularity at a finite time in the past and can be
characterized by the fact that the predicted age of the Universe is less than the Hubble time,
so [290]

t0 < H−1
0 . (1.61)

Analytical solutions can be derived for the following Friedmann cases:
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• Dust Only Models: In this case, we set ΩΛ,0 = Ωr,0 = 0 in Eq. (1.59) and obtain

H2 = H2
0

[
Ωm,0 a

−3 + Ωk,0 a
−2
] ×a2

==⇒ ȧ2 = H2
0

(
Ωm,0 a

−1 + 1− Ωm,0

)
.

Setting Ωm,0 = 1, the solution is rather simple [290]

a(t) =

(
3

2
H0 t

)2/3

.

For such a universe it straightforward to calculate its age by fixing t = t0 in the previous
equation and solving it with respect to t0. So, the current age of such a universe is [290]

t0 =
2

3H0

⇒ t0 ≈ 9.3× 109 years ,

an age significantly lower than the age of some of the oldest stars existing in some globular
clusters. For the dust only models with Ωm,0 > 1 and Ωm,0 < 1 the scale factor is derived
to be [290]

a =
Ωm,0

2(Ωm,0 − 1)
(1− cosψ) ,

a =
Ωm,0

2(1− Ωm,0)
(coshψ − 1) ,

respectively, where ψ corresponds to the development angle. The Ωm,0 = 1 case is known
in the literature as the Einstein–de-Sitter model.

• Radiation Only Models: In a similar manner, we set ΩΛ,0 = Ωm,0 = 0 in Eq. (1.59) and
obtain a similar equation as in the dust only models of the form

H2 = H2
0

[
Ωr,0 a

−4 + Ωk,0 a
−2
] ×a2

==⇒ ȧ2 = H2
0

(
Ωr,0 a

−2 + 1− Ωr,0

)
.

Setting Ωr,0 = 1 the solution that we obtain is also trivial [290]

a(t) = (2H0 t)
1/2 ,

while solving with respect to t = t0 as we did before, we compute the age of such a
universe to be

t0 =
1

2H0

⇒ t0 ≈ 7× 109 years ,

an age that is even smaller than the one that we calculated for the dust only models. For
Ωr,0 6= 1 the solution for the scale factor is [290]

a(t) =
(

2H0 Ω
1/2
r,0 t

)1/2
(

1 +
1− Ωr,0

2Ω
1/2
r,0

H0 t

)1/2

and the corresponding age of such a Universe is generalized to

t0 =
1

H0

1

Ω
1/2
r,0 + 1
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1.3.2 Lemaitre Models

The Lemaitre Models correspond to models with ΩΛ,0 6= 0. In this subsection we will review
the matter only models, i.e. models with Ωr,0 = 0 that have embed a Big Bang origin and
expand forever. This assumption is not far from the truth, since current observations suggest
that the radiation density Ωr,0 is significantly lower than Ωm,0 or ΩΛ,0. However, the results can
be easily extended to models with Ωr,0 6= 0.

Analytical solutions can be obtained for the following Lemaitre models:

• Matter Only Lemaitre Models: In this case, we set Ωr,0 = 0 in Eq. (1.59) and calculate

H2 = H2
0

[
Ωm,0 a

−3 + Ωk,0 a
−2 + ΩΛ,0

] ×a2

==⇒ ȧ2 = H2
0

(
Ωm,0 a

−1 + Ωk,0 + ΩΛ,0 a
2
)
⇒

(1.60)
===⇒ ȧ2 = H2

0

(
Ωm,0 a

−1 + ΩΛ,0 a
2 + 1− Ωm,0 − ΩΛ,0

)
.

This equation is rather complicated and the elliptic functions are needed for the solution
of the integral, so we break the solution to small and large values of time. Doing so, we
can easily solve the integral and acquire [290]{

a(t) =
(

3
2
H0

√
Ωm,0 t

)3/2
, for small t

a(t) ∝ eH0

√
ΩΛ,0 t, for large t .

• Spatially Flat Matter Only Models: In a similar manner, we set Ωr,0 = 0 and Ωk,0 = 0 in
Eq. (1.59) and derive

H2 = H2
0

[
Ωm,0 a

−3 + ΩΛ,0

] ×a2

==⇒ ȧ2 = H2
0

(
Ωm,0 a

−1 + ΩΛ,0 a
2
)
.

Solving the integral, we find the following two solutions for the cosmic time of such
case [290]

t =
2

3H0

√
|ΩΛ,0|

×

sinh
−1
(√

a3 |ΩΛ,0|
1−ΩΛ,0

)
, for ΩΛ,0 > 0

sin−1
(√

a3 |ΩΛ,0|
1−ΩΛ,0

)
, for ΩΛ,0 < 0 .

Inverting this equation, it is straightforward to obtain the solution for the scale factor.

However, not all the Lemaitre models have a Big Bang origin. In Fig. 1.6 we summarize
various Lemaitre universes in the parametric space (Ωm,0,ΩΛ,0). In this graphic we have different
dividing lines that split the graph in various regions, so depending on the different values of
Ωm,0 and ΩΛ,0 we can identify useful properties for each universe case. The line that divides
the “open-closed” universes has the following simple form [290]

ΩΛ,0 = 1− Ωm,0 ,

while the dividing line that splits the “accelerating-decelerating” universes is given by [290]

ΩΛ,0 =
Ωm,0

2
.

The form of the other two lines (the “No Big Bang - Big Bang” and “Expand forever - Recol-
lapse” lines) can be obtained after some tedious calculations (see Ref. [290] for more details).
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Figure 1.6: Different Lemaitre universes with matter and cosmological constant as a function
of Ωm,0 and ΩΛ,0. The red line divides the accelerating with the decelerating universes, the
blue line separates the open and closed universes, while the purple circle corresponds to our
Universe (note also the additional black lines in “no Big Bang - Big Bang” and the “Expansion
forever - Recollapse”) that divide the graph. Partially adopted from Ref. [290]

Current observations indicate that Ωm,0 = 0.3, ΩΛ,0 = 0.7 and Ωk,0 = 0 (the purple circle in
Fig. 1.6) highly excluding the possibility that we live in a decelerating Universe. Moreover, it
is clear that our Universe has a Big Bang origin and that it will expand forever in the future.
“And what about the age of this kind of Universe?” In this case, assuming that the contribution
from radiation is negligible, Eq. (1.59) is written as

H2 = H2
0

[
Ωm,0 a

−3 + ΩΛ,0

]
⇒ H2 = H2

0

[
Ωm,0 a

−3 + (1− Ωm,0)
]
⇒

⇒ da

dt

1

H0

=

√
Ωm,0

a

√
1 +

1− Ωm,0

Ωm,0

a3

∫
=⇒
∫ a

0

da′
√
a′√

Ωm,0

√
1 + 1−Ωm,0

Ωm,0
a′3

= H0

∫ t

0

dt , (1.62)

where we used that Ωm,0 + ΩΛ,0 = 1. The integral of the left hand is quite complicated but it
can be solved making the following change of variables

1− Ωm,0

Ωm,0

a3 = x3 . (1.63)
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Then, we immediately derive that the age of the Universe is

t0 =
2

3H0

√
1− Ωm,0

ln

[√
1− Ωm,0 + 1√

Ωm,0

]
⇒ t0 ≈ 13.5× 109 years , (1.64)

assuming that H0 = 70 km s−1 Mpc−1.

1.4 Triumphs and Challenges of ΛCDM

Since 1998 an immense number of different cosmological data have provided evidence that
support ΛCDM as the standard cosmological model [17, 18, 39–55]. The basic assumptions
of ΛCDM include the viability of the Cosmological Principle and GR at cosmological scales,
the existence of the Cold Dark Matter and of the cosmological constant as the driving force
of the accelerated expansion of our Universe, the flatness of spacetime as well as the exis-
tence of a primitive rapid inflation phase that is essential to tackle the horizon, flatness and
magnetic monopole problems [290, 306–310]. Furthermore, ΛCDM depends only on six basic
parameters that have been significantly constrained by the Planck mission [18] and are illus-
trated in the following Table 1.1, where h is the dimensionless Hubble parameter defined as
H0 = 100h km s−1 Mpc−1.

Parameter Name Value

Ωb,0 h
2 Baryon Density 0.02237± 0.00015

Ωc,0 h
2 Cold Dark Matter Density 0.1200± 0.0012

100 θMC Angular Size of the Sound Horizon at Recombination 1.04092± 0.00031
τ Optical Depth 0.0544± 0.0073

ln(1010As) Amplitude of Curvature Primordial Perturbations 3.044± 0.014
ns Spectral Index 0.9649± 0.0042

Table 1.1: The values of the six independent parameters of ΛCDM constrained by the Planck
mission [18] using the TT,TE,EE+lowE+lensing likelihoods. Based on the six independent
parameters the best fits of the other parameters needed to describe our Universe can be calcu-
lated.

The six independent parameters of ΛCDM are the present value of the baryon density Ωb,0 h
2,

the present value of the cold dark matter density Ωc,0 h
2, the angular size of the sound horizon at

recombination 100 θMC , the optical depth τ , the marginalized amplitude of curvature primordial
perturbations ln(1010As) as well as the spectral index ns. Based on these values, one can
calculate basically all the other parameters, such as the present value of the matter density
parameter Ωm,0, the Hubble constant H0 etc., needed to describe our Universe.

However, despite its simplicity, consistency with the data and accurately predicting a variety
of different phenomena, such as the accelerated expansion of the Universe [37,38], the form and
properties of the power spectrum of the Cosmic Microwave Background (CMB) [17,18,39], ob-
servations in the large scale regime [311], as well as the primordial abundances of light elements
(hydrogen, deuterium, helium and lithium) [312–315], ΛCDM faces a number of challenges both
at the theoretical and the observational level.
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1.4.1 Theoretical Challenges

From the point of view of particle physics, the cosmological constant naturally emerges as
an energy density of the vacuum, since both the cosmological constant and the vacuum energy
present the same dynamical behaviour in the context of GR. In Quantum Field Theory (QFT)
empty space is not empty, but it is composed of fundamental quantum fields that oscillate
at different frequencies ω~k. These oscillations can be represented by Feynman loop diagrams
that add an infinite amount of quantities to the total energy of a quantum system. The so
called “ground state” of the vacuum in QFT, i.e. the state with zero real particles, can be
characterized by an energy density of the form [60]

ρvac =

∫
d3~k

(2π)3

ω~k
2

=
1

2

∫ ∞
0

d3~k

(2π)3

√
k2 +m2 =

1

4π2

∫ ∞
0

dk k2
√
k2 +m2 . (1.65)

However, we anticipate that the QFT calculation is valid up to a reasonable cut off scale, so
the upper limit of the integral goes to a certain kmax value. Furthermore, we naturally except
GR to be valid up to the Planck scale, hence we can also assume that kmax = Mpl ≡ 8π G−1

N =
1.22× 1019 GeV. In this case, the integral (1.65) is trivially solved to give [60]

ρvac ≈
k4
max

16 π2
=

M4
pl

16π2
⇒ ρvac ≈ 1074 GeV4 , (1.66)

where we used that for large k’s,
√
k2 +m2 →

√
k2 = k. Observationally, since the cosmological

constant dominates at the present epoch we have [60]

Λ ≈ H2
0 ⇒ 8π GN ρΛ ≈ H2

0 ⇒ ρΛ ≈ (H0Mpl)
2 ⇒ ρΛ ≈ 10−47 GeV4 . (1.67)

Comparing Eq. (1.66) with (1.67) one can see that ρvac is 10121 orders of magnitude larger
than the observed value of ρΛ

4. This is known as the cosmological constant (or smallness)
problem [56–60] and remains up to date a major theoretical issue for ΛCDM.

Another theoretical problem is encountered when considering the matter energy density ρm
and the cosmological constant energy density ρΛ. Even though ρm is evolving with redshift
and ρΛ is constant, these totally independent quantities appear to be comparable (of the same
order of magnitude) at present time. For this to happen, their ratio should be fine tuned
to a very specific infinitesimal value in the early Universe. Unfortunately, ΛCDM offers no
physical mechanism to explain this remarkable coincidence and the problem is referred to the
bibliography as cosmic coincidence problem [61, 62].

Some authors in the field, discuss if these theoretical challenges constitute actual problems
[316]. They appear to be problematic only if we consider that we could find ourselves with
equal probability in any of the periods of the cosmic evolution. So, necessarily anthropic
arguments enter the discussion and the anthropic principle is naturally considered to be a
possible solution to these problems [95–98]. In the context of the anthropic principle, a group
of different universes exists each one with a specific value of Λ. From this group, the universes
with larger Λ than the observed do not form galaxies and as a result they do not have any
intelligent life. Therefore, the most likely Universe that has intelligent life is the one that has
a value of Λ that is big enough to form galaxies, i.e. our Universe.

4This difference significantly improves with the addition of other fields or in the context of Supersymmetry
(see for instance Refs. [59, 60]).
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1.4.2 Observational Challenges

Observationally, a number of different cosmological datasets analyzed in the last decade
seem to prefer different values (at a level of 2σ or more) for some of the basic parameters of
ΛCDM. The most important “tensions” of ΛCDM include the following (see Ref. [92] for a
more extensive discussion on the subject):

• The H0 Tension: This tension is the most statistically significant and refers to the mis-
match of the value of the Hubble constant. Indirect measurements from the Planck
mission from CMB data, Baryon Acoustic Oscillations (BAO) as well as uncalibrated
SnIa data using the inverse distance ladder method in the context of a ΛCDM model
calculate the Hubble constant to be H0 = 67.36±0.54 km s−1 Mpc−1 [18]. This value is in
a 5σ level tension with the direct measurement published from Type Ia supernovae data,
using the standard distance ladder method H0 = 73.04± 1.04 km s−1 Mpc−1 [63]. Similar
values with the direct measurement of SnIa data for the Hubble constant have been re-
ported using Tully Fisher data [317,318], Type II supernovae data [319] as well as strong
lens systems and time-delay measurements [64,320,321]. Nevertheless, H0 measurements
coming from a calibration of the Tip of the Red Giant Branch method (instead of the
usual Cepheid calibration one) on SnIa data [322, 323], HII galaxy measurements [324]
as well as various low redshift data combinations [325] report a value that lies in the
intermediate area of these two. Finally, recent independent measurements from gravita-
tional waves give a Hubble constant value with significantly large errors, failing to tip the
balance in favour of either side [326–329]. The H0 measurements are summarized in Fig.
1.7.
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H0=67.36±0.54, Aghanim et al. (2018)

H0=67.27±0.6, Aghanim et al. (2018)

Figure 1.7: The Hubble constant H0 constraints superimposed with the 1σ errors derived by
different datasets (Partially adopted from Ref. [92]). For the reproduction of this figure visit
the following dropbox link.
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Figure 1.8: The S8 constraints superimposed with the 1σ errors derived by different datasets
(Partially adopted from Ref. [92]). For the reproduction of this figure visit the following dropbox
link.

• The σ8 or S8 or Growth Tension: This is a milder tension and refers to mismatch of the
values of the σ8/Ωm,0 parameters. Frequently, for convenience, the S8 parameter is used
that is defined as S8 ≡ σ8

√
Ωm,0/0.3, i.e. a combination of the present value of the

matter density parameter and the root mean square density fluctuations. In particular,
in the context of ΛCDM, dynamical probes such as the Weak Lensing (WL) [75–78,80,82,
330–334], the Redshift Space Distortions (RSD) [68,70,74] as well as Cluster Count (CC)
data [53–55, 81, 335] predict lower values for S8 compared to the corresponding values
predicted by the CMB data and the Planck mission [18]. This tension is currently at a
2σ− 3σ level but it can reach the 5σ threshold, if the EG statistic data are adopted [85].
The specific values from different probes are illustrated in the following Fig. 1.8.

• Low–High l CMB Power Spectrum Anomaly: Another mild anomaly that has been ex-
tensively discussed in the context of ΛCDM, is the mismatch of the best fit of the cold
dark matter density parameter Ωc,0 h

2 that is derived using high (l > 1000) and low mul-
tipoles (l < 1000). This tension is currently at a 2.5σ level [336, 337] and seems to be
relaxed if one introduces by hand the phenomenological parameter AL, that changes the
level of lensing in the power spectrum. In the context of ΛCDM, this phenomenologi-
cal parameter should take the value AL = 1, but the Plank mission reports a value of
AL = 1.243± 0.096 [337].

• BAO Low-High z Anomaly: This anomaly is at a similar level with the low l–high l CMB
power spectrum tension and corresponds to the predicted value of Ωm,0 obtained by Ly-α
BAO that is Ωm,0 ≈ 0.19± 0.7 for z > 2.4, while galaxy BAO measurements for z < 0.6
support Ωm,0 ≈ 0.37± 0.7 [338,339].
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Of course, a possible explanation for these tensions would be the existence of some unknown
systematic effect which affects the results. However, if this is not true, we have severe ob-
servational evidence that ΛCDM should be extended to a more complete theory of gravity
which will be free of these problems. Moving towards this direction a vast variety of ideas have
been proposed as possible solutions to address the aforementioned (theoretical or observational)
tensions.

These physical mechanisms, include dynamical dark energy models [99–105], running vac-
uum models in which the vacuum energy density is a time dependent quantity [106–114],
theories where some sort of scalar field represents the dark energy (e.g. quintessence dark
energy models [115–130], phantom dark energy models [131–136], k-essence dark energy mod-
els [137, 138], scalar tensor theories [139–150] etc.) or some sort of a perfect fluid (e.g. Chap-
lygin gas [151–155]), modified theories of gravity that may depend on the Ricci scalar R
[156–158, 160, 161, 168, 170, 172, 173], or on the torsion T [181–190], or even more complicated
modifications such as extra dimensions [191–193], braneworld models [194, 195, 199], Brans
Dicke models [203], interacting dark energy with dark matter models [204–211], interacting
dark matter with neutrinos [212], holographic dark energy models [213–216], early dark energy
models [217–223], decaying dark matter models [224], and many more. Nevertheless, none of
them, up to date, provide a solution that naturally explains the accelerated expansion of the
Universe as well as providing a more fundamental mechanism to resolve the aforementioned
problems of the concordance model. Perhaps ΛCDM is a limiting case of a more complete
theory of gravity.

1.5 ΛCDM Alternative Theories

In this section we present some of the most well known alternative theories that deviate
from its theoretical framework and have been proposed over the years in an attempt to better
handle the challenges of ΛCDM. Obviously, the alternative theories should not depart far from
it due to the tremendous success of ΛCDM in explaining most of the cosmological observations.

1.5.1 Dynamical Dark Energy Models

The most obvious extension of ΛCDM corresponds to a dark energy component, where the
energy density ρDE presents a dynamical evolution and obeys the usual continuity equation

ρ̇DE + 3H ρDE (1 + wDE) = 0 . (1.68)

Clearly, it is possible to construct many complex forms for wDE, but in this section our goal is
just to review the simplest cases, namely the wCDM and the Chevallier-Polarski-Linder (CPL)
[101, 103] dark energy models (for more complicated forms of wDE see e.g. Refs. [340, 341]).
Common feature of the studied dark energy models are that they also share the fine tuning
problem of ΛCDM, but the extra degrees of freedom may explain the accelerated expansion of
the Universe in a more natural way.

The first of them corresponds to a model with a constant equation of state parameter
wDE ≡ w that differs from the concordance one, since w 6= wΛ = −1. For w = −1 this model
reduces to the standard one and in the context of a flat Universe, the Hubble parameter for
wCDM takes the form

H(z) = H0

√
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + (1− Ωm,0 − Ωr,0) (1 + z)3(1+w) . (1.69)
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Another quite interesting dark energy parametrization, corresponds to the CPL model. This
model assumes a slowly varying equation of state of the form

wDE(z) = w0 + w1
z

1 + z
. (1.70)

For this model we have two degrees of freedom instead of one and this parametrization has the
advantage that the equation of state does not increase indefinitely with redshift. The Hubble
parameter for this case is the following

H(z) = H0

√
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + (1− Ωm,0 − Ωr,0) (1 + z)3(1+w0+w1)e−3

w1z
1+z . (1.71)

There is no good reason to believe that these purely phenomenological parametrizations ap-
proach the real form of dark energy, but due to their simplicity, they have been extensively
used in the literature as baseline models before advancing to more sophisticated dark energy
forms for the equation of state.

1.5.2 Modified Matter Models

This class of models [342] adopts GR at cosmological scales and attributes the observed
accelerated expansion of the Universe to a dark energy component with negative pressure.
Since GR is considered to be a valid theory, the Einstein’s Field Equations (1.13) that were
derived from the Einstein Hilbert action determine the dynamics of the Universe. However, the
right hand side of (1.13) is slightly different because the energy momentum tensor Tµν is altered
to include the dark energy component with the negative pressure. Important examples of this
class include (but not limited to) the quintessence dark energy models [115–130], the phantom
dark energy models [131–136], k-essence models [137, 138], chaplygin gas models [151–155],
topological defects [225–227] etc. In this subsection we focus on the first three examples and
we briefly outline the main characteristics of each one below.

1.5.2.1 Quintessence/Phantom Dark Energy Models

In the Quintessence dark energy models, the role of the dark energy that drives the acceler-
ated expansion is embodied by a scalar filed φ, with a corresponding slowly varying potential
V (φ). In particular, the energy density of the scalar field ρφ is evolving slowly (due to its de-
pendence from the potential) until it dominates, generating the observed accelerated expansion.
The total action for this case is given as [130,343]

Stot = SEH + Sφ =

∫
d4x
√
−g
[

1

2κ
R +

1

2
gµν ∂µ φ ∂ν φ− V (φ) + Lmatter

]
. (1.72)

Following the stationary action principle, we find the energy momentum tensor of the scalar
field φ to be

Tµν = ∂µ φ ∂ν φ− gµν
[

1

2
gαβ∂α φ ∂β φ− V (φ)

]
. (1.73)

From (1.73), the energy density ρφ and the pressure of the scalar field pφ can be inferred leading
to an equation of state parameter of the form [130,343]

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.74)
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In the context of a flat FLRW metric, the scalar field obeys the following Klein-Gordon

φ̈+ 3H φ̇+
dV

dφ
= 0 (1.75)

In order to produce the accelerated expansion of the Universe, the condition wφ < −1/3
should be satisfied which entails that φ̇2/2 � V (φ) and that the scalar field also violates
the strong energy condition [343]. Clearly, the form of the potential V (φ) defines the way
that the scalar field reproduces the accelerated expansion of the Universe. Hence, over the
years, many forms for the potential forms have been studied [115, 116, 124, 125, 343–348] and
some of them have the ability to explain the cosmological data with great efficiency and more
effectively than ΛCDM. However, quintessence models are not without shortcomings. The most
severe and puzzling drawback for this class of models is that they share the same fine tuning
problem as ΛCDM. The required energy density today is ρφ ≈ 10−47 GeV4, corresponding to a
particle with a mass mφ ≈ 10−33 eV, a value many order of magnitudes smaller than any known
particle [60,341].

The phantom dark energy models are identical to the quintessence dark energy models but
with a negative kinetic term [343]. Therefore, changing the kinetic term sign in Eq. (1.72), it
is straightforward to show that the equation of state parameter takes the form

wφ =
pφ
ρφ

=
−1

2
φ̇2 − V (φ)

−1
2
φ̇2 + V (φ)

. (1.76)

A characteristic of the phantom dark energy models is that the energy density keeps growing
with time leading to even more acceleration and an equation of state parameter wφ < −1,
a value that is not excluded by current observational data (e.g. the Planck mission reports
w = −1.028± 0.031 for a combination of CMB, SnIa and BAO data [18]). This value leads the
Universe to a Big Rip singularity in the far future, i.e. a state that the Universe (even atoms)
is ripped apart and physical laws break [343,349].

1.5.2.2 k-Essence Dark Energy Models

Another interesting class of the modified matter models that we briefly discuss is the k-
essence class of dark energy models. The action of the k-essence models is in general given
by [350]

Stot = SEH + Sφ =

∫
d4x
√
−g
[

1

2κ
R + p(φ,X) + Lmatter

]
, (1.77)

where p(φ,X) is a general function of the kinetic term of the scalar field X = 1
2
gµν ∂µ φ ∂ν φ.

Following the stationary action principle, the energy momentum tensor of the scalar field is

Tµν =
dp

dX
∂µ φ ∂ν φ+ gµν p , (1.78)

leading to an equation of state parameter of the form [350]

wφ =
pφ
ρφ

=
p

2X dp
dX
− p

. (1.79)

In order to achieve wφ ≈ −1, as it is indicated by the cosmological data, the condition |2X dp
dX
| �

|p| should be satisfied. However, even the k-essence models constructed to solve some issues of
ΛCDM, such as the coincidence problem face other challenges e.g. lead to a sound speed of the
field that is superluminal [350].
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1.5.3 Modified Gravity Models

The third class that we briefly review, corresponds to modified gravity models. In contrast to
modified matter models, the modified gravity models attribute the accelerated expansion of the
Universe to modifications of GR leading to alternative descriptions of gravity itself. Prominent
examples of this class of models include (but not limited to) scalar tensor theories [139–150],
f(R) gravity theories [156–180], f(T ) gravity theories [181–190], braneworld models [194–202],
inhomogeneities [261–266,283,351–358] mainly in the context of Lemaıtre-Tolman-Bondi models
[359–361], massive gravities [362–365] etc. As in the previous subsection we briefly discuss the
main characteristics of the first three below.

1.5.3.1 Scalar Tensor Theories

An important class of modified gravity theories that remain a viable possibility for the
explanation of the observed accelerated expansion of the Universe are the scalar tensor theories.
These theories have all the advantages of the quintessence dark energy models but have the
additional advantage of a more natural explanation for the physical origin of the scalar field.
In particular, the scalar field φ with a corresponding potential V (φ), is non-minimally coupled
with gravity, a characteristic that naturally emerges in Supergravity or M theories [366,367].

Throughout this thesis, we will focus on the most general form of the scalar tensor theories
(up to two derivatives) that was firstly presented in Refs. [146, 147]. In this case, the scalar
field dependence is given by an arbitrary function F (φ) and the corresponding action has the
following form [146,147]

SST =

∫
d4x
√
−g
[
F (φ)

2
R− 1

2
Z(φ) gµν∂µφ∂νφ− V (φ)

]
+ Sm , (1.80)

where R is the Ricci scalar, Sm is the matter action term of some arbitrary matter source and
the arbitrary functions F (φ) and Z(φ) determine the dynamics of the scalar field along with
its potential. This form includes a wide variety of different theories, such as the classical Brans
Dicke model for F (φ) = φ and Z(φ) = ωBD/φ, or some f(R) theories is the arbitrary function
depends also in the Ricci scalar. The simplest choice corresponds to Z(φ) = 1 and F (φ) to
remain arbitrary [147], which will adopt throughout the present thesis. However, despite its
arbitrariness, the function F (φ) needs to be consistent with observations. Therefore, from solar
system observations we have that dF/dφ < 4 × 10−4, while at the same time F (φ) should be
positive so that gravitons have positive energy.

In the context of a homogeneous scalar field and a flat FLRW metric, the corresponding
dynamical equations derived using the stationary action principle are [146]

3F (φ)H2 = ρm +
φ̇2

2
+ V (φ)− 3H Ḟ , (1.81)

−2F (φ) Ḣ = ρm + φ̇2 + F̈ −HḞ , (1.82)

φ̈+ 3
ȧ

a
φ̇− 3 Ḣ

dF

dφ
+
dV

dφ
= 0 . (1.83)

Usually, the first two equations are expressed in terms of the redshift. So, eliminating the
potential from Eqs. (1.81) and (1.82), we find [147,150](

dφ

dz

)2

= −d
2F

dz2
−
[
dlnH

dz
+

2

1 + z

]
dF

dz
+ 2

dlnH
dz

1 + z
F − 3(1 + z) Ωm,0

(
H0

H

)2

F0 , (1.84)
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where F0 corresponds to the present value of F (φ). Finally, in scalar tensor theories, as in all
modified gravity theories, the effective Newton’s constant Geff presents a dynamical evolution.
For the action (1.80), Geff is given as

Geff(z) = GN

 1

F (z)

F (z) + 2
(
dF
dφ

)2

F (z) + 3
2

(
dF
dφ

)2

 (1.85)

1.5.3.2 f(R) Gravity Theories

The second class that we briefly discuss corresponds to f(R) gravity theories. This class of
theories generalizes the Ricci scalar of the Einstein-Hilbert action to a more general function
f(R). This form is preferred over more complicated forms that include higher order curvature
invariants (e.g. RµνR

µν) to avoid the Ostrogradski instability [170,368]. So, the general action
for the f(R) modified theories of gravity is the following [161,170,176]

Sf(R) =
1

2κ

∫
d4x
√
−g f(R) + Sm , (1.86)

where Sm is the matter action term of some arbitrary matter source. In the context of a
flat FLRW metric, the corresponding dynamical equations derived using the stationary action
principle are5

3H2 df

dR
−

df
dR
R− f
2

+ 3H
d2f

dR2
Ṙ = 8π GN ρm , (1.87)

−2
df

dR
Ḣ = 8π GN ρm +

d2

dt2

(
df

dR

)
+H

d

dt

(
df

dR

)
. (1.88)

Of course for f(R) = R− 2Λ we revert to the usual ΛCDM case.
However, not all f(R) models are viable [168–170]. Similar to what we considered in scalar

tensor theories, the gravitons should have positive energy leading to the condition df/dR > 0.
Furthermore, in this case we have the additional condition d2f/dR2 > 0 in order to ensure
the stability of scalar perturbations, since the mass of the f(R) gravity model is approximated
as [169]

M2
f(R) ≈

1

3

(
d2f

dR2

)−1

. (1.89)

Even though these two stability conditions limit the eligible f(R) forms, a plethora of alterna-
tives have been studied. Two of the most popular models include the Hu-Sawicki [168] and the
Starobinski f(R) models [169]. These models not only satisfy the above conditions but they
can provide at the same time accurate predictions for the presence of matter era, the current
accelerated expansion as well as the stability of cosmological perturbations.

5It is important to note here that two different approaches are followed in the literature to extract the
dynamical equations from the action (1.86). The first one is the metric formalism and the second one is the
Palatini formalism where the Christoffel symbols and the metric tensor are considered independent quantities.
These two methods in the context of f(R) theories are non equivalent at the level of the equations of motion.
In the present thesis we choose to adopt the usual metric formalism. For an extensive discussion on this subject
see Ref. [170].
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Despite the similar predictions between ΛCDM and viable f(R) theories they have some
key differences, such as the nature of Newton’s constant. In the context of the f(R) theories,
the effective Newton’s constant under the sub-horizon/quasi-static approximation is calculated
to be [300]

Geff(k, z) = GN


(
df

dR

)−1
1 + 4

(
d2f
dR2/

df
dR

)
· k2 (1 + z)2

1 + 3
(
d2f
dR2/

df
dR

)
· k2 (1 + z)2

 . (1.90)

Therefore, considering a specific form for f(R) we can easily derive the corresponding dynam-
ical equations as well as the effective Newton’s constant for each f(R) form, using the above
formulas.

1.5.3.3 f(T ) Gravity Theories

Another class of models that has gained a lot of attention over the years is f(T ) gravity
theories. In this class, instead of the Ricci scalar R, the geometry manifests itself with the
torsion T . So, similarly to f(R) gravity theories where the Ricci scalar is promoted to an
arbitrary function f(R), in f(T ) gravity theories the torsion T is promoted to an arbitrary
function f(T ).

In f(T ) gravities it is convenient instead of the metric tensor gµν , to use the vierbeins
fields eA(xµ) that at each point of the manifold form an orthonormal basis for the tangent
space [186,369]

eA · eB = ηAB = diag(1,−1,−1,−1) . (1.91)

In coordinate basis, the vierbeins fields are expressed as eA = eµA∂µ, leading to a metric of the
following form

gµν(x) = ηAB e
A
µ (x) eBν (x) . (1.92)

Now, introducing the curvature-less Weitzenböck connection as

w

Γ
λ

νµ ≡ eλA ∂µe
A
ν ,

the torsion tensor can be defined as [186]

T λµν =
w

Γ
λ

νµ −
w

Γ
λ

µν = eλA (∂µe
A
ν − ∂νeAµ ) . (1.93)

Using Eq. (1.93), it is straightforward to construct the torsion scalar

T ≡ 1

4
T ρµν Tρµν +

1

2
T ρµν Tνµρ − T ρ

ρµ T νµν , (1.94)

that is utilized for various f(T ) models.
The most commonly used action for the f(T ) theories of gravity corresponds to [183,186]

S =
1

2κ

∫
d4x e [T + f(T )] + Sm , (1.95)

where e ≡
√
−g and Sm corresponds to the matter action term of some arbitrary matter source.

In the context of a flat FLRW metric and using the stationary action principle (varying this
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time with respect to the vierbeins) the corresponding dynamical equations are [183,186]

H2 =
8 π GN

3
ρm −

f

6
+
T fT

3
, (1.96)

Ḣ = − 4π GN ρm
1 + df/dT + 2T d2f/dT 2

, (1.97)

with T = −6H2. Finally, from (1.96), one can define the corresponding energy density and
pressure, leading to an equation of state parameter of the form [183,186]

w = − f/T − df/dT + 2T d2f/dT 2

[1 + df/dT + 2T d2f/dT 2] [f/T − 2 df/dT ]
. (1.98)

Obviously for f(T ) = −2Λ, we revert to the usual ΛCDM case.

1.5.4 “Tilted” Universes

Another quite interesting approach that has been discussed in the literature [370–372],
corresponds to the concept of the “tilted Universe”. These types of cosmological models are
equipped with two families of observers. The first one, follows the smooth Hubble expansion,
whereas the second family of observers live in a galaxy in the interior of a bulk flow that moves
with respect to the Hubble flow with a non relativistic peculiar velocity. With the term bulk
flow we mean large regions of a few hundred Mpc which move coherently with a velocity of
a few hundred km/s [373–376]. The observers that follow the smooth Hubble expansion are
the fictitious (idealised) observers while the other observers are called tilted. Even though the
majority of the other solutions ignore peculiar velocities, in this class of cosmological models
the peculiar motions play a key role and can successfully reproduce both the early deceleration
and the late acceleration phases of the Universe as we discuss in the current Subsection.

Suppose that the fictitious observers have a four-velocity ua that is normalised as uaua = −1,
the tilted observers have a four-velocity ũa that is normalised as ũaũ

a = −1 and that υ̃a which
is normalised as υ̃2 = υ̃aυ̃

a � 1 corresponds to the peculiar velocity of the tilted observers
with respect to the Hubble flow. Then, the three velocities are connected through the reduced
Lorentzian boost [370]

ũa = ua + υ̃a . (1.99)

The mean kinematics of the observers are determined by their volume scalar of motion, namely
their expansion/contraction rate. Adopting the 1+3 covariant approach [377–380], the spatial
divergence of Eq. (1.99) gives [381]

Θ̃ = Θ + θ̃ , (1.100)

in the linear regime, with Θ = Daua, Θ̃ = D̃aũa and θ̃ = D̃aυ̃a. Although Θ̃ and Θ are always
positive, this is not the case for θ̃ which can be either positive or negative corresponding to
expanding or contracting bulk flows respectively.

Hence, it is clear that the measured expansion rates in the two frames may differ simply due
to their relative motion. As a result, these differences affect the measurement of the deceleration
parameter in the two frames. Denoting the deceleration parameter of the fictitious observer as
q and of the tilted observer as q̃, then it is straightforward to show, after some algebra, that
the two quantities are connected through [370–372]

q̃ = q +
1

9

(
λH
λ

)2
θ̃

H
, (1.101)
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where λH = 1/H is the Hubble radius and λ corresponds to the size of the bulk flow. It is
important to note that the second term of Eq. (1.101) is a correction that emerges only when
the peculiar motions are taken into consideration. So, in principle, it is possible for the fictitious
observer to measure positive values of q, while the tilted one measures negatives values of q̃.
This indicates that the tilted observers may believe that they live in an accelerating Universe,
while in reality the Universe is decelerating. This is only a local effect and happens due to the
presence of the peculiar motions.

From (1.101) it is easy to define the transition scale λT , i.e. the scale in which the sign of
q̃ changes as [382]

λT =

√
1

9q

|θ̃|
H
λH , (1.102)

which is called “the peculiar Jeans length” (the name is given due to its similarity with the
standard Jeans length). On scales well inside this length, the peculiar velocities dominate over
the background expansion. Focusing on contracting bulk flows where θ̃ < 0, then Eqs. (1.101)
and (1.102) are easily combined to give

q̃ = q

[
1−

(
λT
λ

)2
]
. (1.103)

So, the value of q̃ is actually determined by the form of the local volume scalar θ̃. In the
previous equations, the form of θ̃ is considered to be constant. However, it is only natural to
expect it to be a scale dependent expression. More specifically, we anticipate the value of θ̃
to decrease as λ increases and when dealing with contracting bulk motions, we expect faster
contraction rates near the outskirts of the flow and slower towards its center. These qualitative
characteristics can be parametrised by the form [383]

θ̃ = θ̃(λ) =
mλ2

p+ r λ3
, (1.104)

where m, p and r correspond to free parameters. Substituting this equation in Eq. (1.103) we
deduce

q̃ = q̃(λ) =
1

2

(
1− m

p+ r λ3

)
, (1.105)

with the term 1/2 in front of the parenthesis corresponds to a decelerating Universe measured
in the Hubble frame. This form is quite useful since after some rearrangement, it can be directly
confronted with cosmological data. In particular, following the analysis of Ref. [383] one can
set λ ≡ χ̄(z), where χ̄(z) describes the line-of-sight comoving distance (1.41) and construct the
evolution of the Hubble rate via [384]

H(z) = H0 exp

[∫ z

0

[
1 + q(u)

1 + u

]
du

]
(1.106)

and then, substituting the derived formula to the luminosity distance (1.44). Interestingly, in
Ref. [383] this procedure is followed and using SnIa data the derived results indicate that the
tilted cosmological models may perform similar to the standard ΛCDM paradigm.

In the present thesis, we focus on deviations from the standard ΛCDM paradigm. We study
different cosmological data and perform appropriate statistical tests that have the ability to
discriminate between the standard concordance model and alternatives theories. In particular:
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• In Chapter 2, we focus on the growth tension and use up to date RSD data in order to
construct an extensive compilation of 63 datapoints. Utilizing this compilation, we study
a phenomenological parametrization for Geff/GN and extract useful information regarding
its best fit parameters, indicating a 4σ − 5σ deviation from the ΛCDM case as well as
a decreasing form of Geff/GN at low redshifts z. Furthermore, we study viable modified
theories, such as the f(R) and scalar tensor theories and show that such a decreasing form
can not be realized in the context of a ΛCDM background. Finally, we impose strong
constraints for the phenomenological parametrization Geff/GN using the Planck15/ΛCDM
CMB low l data.

• In Chapter 3, we determine the constraining power of a wide range of cosmological ob-
servables on cosmological parameters, showing that is not monotonically increasing but
is a varying function of the redshift instead that exhibits degeneracy points (redshift
blind spots) and maxima (optimum redshift ranges). As a result, we consider the up
to date compilation of RSD data of the previous Chapter, an up to date compilation of
BAO points, as well as recent SnIa and standard gravitational wave sirens data in order
to identify the corresponding redshift blind spots and the optimum redshift ranges for
specific relevant observables and parameters.

• In Chapter 4, we perform a tomographic analysis of the Pantheon SnIa focusing on the
best fit value of the absolute magnitude M and/or Hubble constant H0 in the context of
a ΛCDM background. Considering only the statistical uncertainties, we show that in the
low redshift regime (z . 0.2) a local variation at the 2σ level with respect to the best fit
value indicated by the full dataset is observed that can be either due to a local matter
underdensity with δρ0/ρ0 ' −0.10 ± 0.04, or due to a modified gravity theory scenario
with an evolving Newton’s constant or due to some unknown statistical fluctuations. In
the context of a local void scenario, a degree of anisotropy is expected in the best fit
value of H0, so we utilize two different methods that are widely used in the literature
to search for anisotropic signals, such as the Hemisphere Comparison (HC) and Dipole
Fit (DF) methods. In the context of the modified gravity scenario, we use the same
phenomenological parametrization of Geff/GN that is used in Chapter 2 and find the best
fit values of the relevant parameters supported by the Pantheon compilation. Finally, in
the context of statistical fluctuations we construct random Monte Carlo simulated data,
including the systematic uncertainties as well. Comparing the real with the simulated
data, we find that only 4 − 5% of the Monte Carlo simulations show the same local
variations at low z, a percentage that approaches the 2σ threshold.

• In Chapter 5, we consider two recently proposed dark energy models that have the po-
tential to address both the Hubble and the growth tensions simultaneously. In particular,
the first one includes a late time abrupt transition of the absolute magnitude M , while
the second one includes not only a transition on M but also on the equation of state
parameter wDE. We compare the quality of fit of the transition models with three well
known smooth deformation models, such as the wCDM, the CPL and the Phenomeno-
logical Emergent Dark Energy model along with the standard ΛCDM. Using appropriate
statistical criteria such as the Akaike Information Criterion and the Bayes factor we find
that the transition models have significant advantages over the smooth deformation mod-
els in question. Finally, we shortly discuss possible theoretical models that can produce
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the behavior of the transition model, such as some quintessence or phantom fields as well
as a very recent false vacuum decay model.

• In Chapter 6, we focus on the sub-millimeter scales and consider two novel parametriza-
tions for the effective potential Veff , that deviate from the standard Newtonian gravity.
Using the torque residual data of the Washington experiment we find the provided quality
of fit and utilizing Monte Carlo simulations we show that the relevant χ2 differences are
not statistically important.

• Finally, in Chapter 7 we summarize our results and discuss possible future prospects.
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Chapter 2
Evolving Newton’s Constant and the Growth
Tension. Implications for Modified Gravity
Theories

As we discussed in the Introduction, prominent among the dynamical probes are the Redshift
Space Distortion (RSD) measurements. RSD is a phenomenon that occurs in the redshift space
and describes the observed distribution of galaxies due to galaxies peculiar motion. At large
scales, object such as galaxies, tend to infall into overdense regions. In an overdense region,
the galaxies that are closest to us move towards the center of the overdensensity creating the
illusion that the galaxies are closer to center than they really are. On the contrary, the galaxies
of the “other side” of the region are moving towards us creating an illusion that they are much
closer to us than they really are. As a result this overdense region seems squashed in redshift
space (top panel of Fig. 2.1) [385–387]. At small scales, where astrophysical objects (such
as clusters) move more arbitrary, they have random motions causing as the result to have
somewhat different redshifts. Therefore, the overdensity region is elongated along the line of
sight (bottom panel of Fig. 2.1). This phenomenon is referred to the bibliography as Finger
of God effect [386–388]. This distortion phenomenon due to the peculiar velocities of galaxies
affects the two point correlation function leading to an anisotropic power spectrum.

However, at large scales a part of the observed anisotropy of the power spectrum is also due
to the use of an incorrect fiducial cosmology H(z) assumed in converting the measured angles
and redshifts into comoving coordinates in order to construct the correlation function and the
corresponding power spectrum [66, 389, 390]. In particular, the comoving distance between a
pair of galaxies separated by an angle dθ in the context of a FLRW metric is calculated to
be [387,391,392]

d`⊥ = (1 + z) dA(z) dθ , (2.1)

where dA(z) corresponds to the angular diameter distance at the redshift of the pair discussed
in the previous section. Moreover, the corresponding separation along the line of sight is

d`‖ =
c dz

H(z)
, (2.2)

where in this case, H(z) corresponds to the true Hubble expansion rate of the true underlying
cosmology. Suppose now that instead of the true underlying cosmology, a different one with a
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Figure 2.1: A schematic illustration of the redshift space distortion effect. The arrows represent
the magnitude and direction of different velocities. From Ref. [387].

background H ′(z) is assumed (the prime here should not confused with the differentiation with
respect to a quantity as in the previous Chapter). Then, the corresponding separations (2.1)
and (2.2) take the form

d`′⊥ = (1 + z) d′A(z)dθ =

[
d′A(z)

dA(z)

]
d`⊥ =

d`⊥
f⊥

, (2.3)

d`′‖ =
c dz

H ′(z)
=

[
H(z)

H ′(z)

]
d`‖ =

d`‖
f‖

, (2.4)

with F ≡ f‖/f⊥ corresponding to the induced anisotropy due to the use of incorrect fiducial
cosmology and has a magnitude [390]

F =
f‖
f⊥

=

[
H ′(z)

H(z)

] [
d′A(z)

dA(z)

]
. (2.5)

This anisotropy that is produced by the incorrect fiducial cosmology is the Alcock-Paczynski
(AP) effect [393] and is degenerate with the RSD anisotropy caused by the peculiar velocities.

The distortion of the distribution of galaxies at redshift space on large scales has been
detected by various redshift surveys throughout the years, constraining the growth rate of
cosmological perturbations f(a). However, since about 2006, the majority of the surveys report
the combination (1.54) instead as a probe of the growth of matter density perturbations. Taking
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into account the AP effect, if an fσ′8 measurement has been obtained assuming an incorrect
fiducial cosmology H ′(z), the true fσ8 measurement obtained assuming the true underlying
cosmology H(z), is given as [66]

fσ8(z) ' H(z) dA(z)

H ′(z) d′A(z)
fσ′8(z) ≡ q(z,Ωm,0,Ω

′
m,0) fσ′8(z) . (2.6)

It is important to note here that (2.6) should be taken as a rough order of magnitude of the
AP effect, since many alternative forms have been studied in the literature. For example, in
Ref. [392] the used RSD data fσ8, are converted from the WMAP [39] to the Planck best fit
cosmology [394]. Therefore, assuming a ΛCDM background for both missions and consider-
ing the WMAP7 ΛCDM cosmology to be the fiducial one, the three dimensional correlation
functions in the context of the AP effect take the form [392]

ξPlanck(d`‖, d`⊥) = ξfid.(f‖ d`‖, f⊥ d`⊥) , (2.7)

where f‖ = Hfid./HPlanck and f⊥ = dPlanckA /dfidA . Using these definitions under specific approx-
imations (e.g. the bias b is assumed proportional to σ8), then the correction factor (2.6) takes
the form

q(z,Ωm,0,Ω
′
m,0) = C

[
H ′(z) d′A(z)2

H(z) dA(z)2

]3/2 (
σ8

σ′8

)2

. (2.8)

Another alternative form for the correction factor is discussed in Ref. [391] that is written as

fσ′8 =

{
β +

n

2

[
1− H ′(z) d′A

H(z) dA

]}
b σ8 , (2.9)

where n is the logarithmic derivative of the power spectrum.
In this Chapter, we construct a compilation of 63 fσ8 measurements that has been reported

by a large variety of surveys from 2004 to 2018. Utilizing this compilation, we adopt the simple
correction factor (2.6) and apply the maximum likelihood method in the context of a non trivial
evolution of the effective Newton’s constant and a ΛCDM background. Moreover, we study a
theoretical parametrization of fσ8(z) and study its potential to fit the solution of the growth
equation for both the GR and the modified gravity case. Finally, we impose strong constraints
from the CMB data utilizing the MGCAMB numerical package.

2.1 Theoretical Predictions of fσ8(z)

Throughout the years, a vast variety of different missions have published RSD growth data
in the form of the fσ8 product (1.54), including the Sloan Digital Sky Survey (SDSS), the
2 degree Field Galaxy Redshift Survey (2dFGRS), the VIMOS-VLT Deep Survey (VVDS),
the 2MASS Redshift Survey (2MRS), the WiggleZ survey, the VIMOS Public Extra-galactic
Redshift Survey (VIPERS), the Galaxy and Mass Assembly (GAMA) survey, the Baryon Os-
cillation Spectroscopic Survey (BOSS), the Subaru Fiber Multi-Object Spectrograph galaxy
redshift survey (FastSound) and the 2MASS Tully-Fisher Survey (2MTF). A compilation of 63
measurements published by these surveys from 2004 to 2016 is presented in Table 2.1, including
the corresponding fiducial cosmology for each case.
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2.1. Theoretical Predictions of fσ8(z)

Index Survey z fσ8 Refs. Year Fiducial
Cosmology

1 2dFGRS 0.17 0.51± 0.06 [395,396] 23/06/2004 (Ωm,0, σ8) = (0.3, 0.79)
2 SDSS-LRG 0.35 0.44± 0.05 [396,397] 30/10/2006 (Ωm,0, σ8)= (0.25, 0.76)
3 VVDS 0.77 0.49± 0.18 [396,398] 13/02/2008 (Ωm,0, σ8) = (0.25, 0.78)
4 2MRS 0.02 0.314± 0.048 [399,400] 13/11/2010 (Ωm,0, σ8) = (0.266, 0.65)
5 SnIa+IRAS 0.02 0.398± 0.065 [400,401] 07/11/2011 (Ωm,0, σ8) = (0.3, 0.814)
6 SDSS-LRG-200 0.25 0.351± 0.058 [402] 09/12/2011 (Ωm,0, σ8) = (0.276, 0.8)
7 SDSS-LRG-200 0.37 0.4602± 0.0378 [402] 09/12/2011
8 SDSS-LRG-60 0.25 0.3665± 0.0601 [402] 09/12/2011 (Ωm,0, σ8) = (0.276, 0.8)
9 SDSS-LRG-60 0.37 0.4031± 0.0586 [402] 09/12/2011
10 6dFGS 0.067 0.423± 0.055 [403] 20/04/2012 (Ωm,0, σ8) = (0.27, 0.76)
11 WiggleZ 0.44 0.413± 0.080 [404] 12/06/2012 (Ωm,0, h, σ8) = (0.27, 0.71, 0.8)
12 WiggleZ 0.60 0.390± 0.063 [404] 12/06/2012
13 WiggleZ 0.73 0.437± 0.072 [404] 12/06/2012
14 SDSS-BOSS 0.30 0.407± 0.055 [405] 22/06/2012 (Ωm,0, σ8) = (0.25, 0.804)
15 SDSS-BOSS 0.40 0.419± 0.041 [405] 22/06/2012
16 SDSS-BOSS 0.50 0.427± 0.043 [405] 22/06/2012
17 SDSS-BOSS 0.60 0.433± 0.067 [405] 22/06/2012
18 Vipers 0.80 0.47± 0.08 [406] 09/07/2013 (Ωm,0, σ8) = (0.25, 0.82)
19 SDSS-DR7-LRG 0.35 0.429± 0.089 [407] 13/08/2013 (Ωm,0, σ8)= (0.25, 0.809)
20 GAMA 0.18 0.36± 0.09 [408] 22/09/2013 (Ωm,0, σ8) = (0.27, 0.8)
21 GAMA 0.38 0.44± 0.06 [408] 22/09/2013
22 BOSS-LOWZ 0.32 0.384± 0.095 [409] 17/12/2013 (Ωm,0, σ8) = (0.274, 0.8)
23 SDSS DR10/11 0.32 0.48± 0.10 [409] 17/12/2013
24 SDSS DR10/11 0.57 0.417± 0.045 [409] 17/12/2013

25 SDSS-MGS 0.15 0.49+0.15
−0.14 [410] 30/01/2015 (Ωm,0, h, σ8) = (0.31, 0.67, 0.83)

26 SDSS-veloc 0.10 0.37± 0.13 [411] 16/06/2015 (Ωm,0, σ8)= (0.3, 0.89)
27 FastSound 1.40 0.482± 0.116 [412] 25/10/2015 (Ωm,0, σ8)= (0.27, 0.82)
28 SDSS-CMASS 0.59 0.488± 0.060 [413] 02/05/2016 (Ωm,0, h, σ8) = (0.307115, 0.6777, 0.8288)
29 BOSS DR12 0.38 0.497± 0.045 [45] 11/07/2016 (Ωm,0, σ8) = (0.31, 0, 0.8)
30 BOSS DR12 0.51 0.458± 0.038 [45] 11/07/2016
31 BOSS DR12 0.61 0.436± 0.034 [45] 11/07/2016
32 BOSS DR12 0.38 0.477± 0.051 [414] 11/07/2016 (Ωm,0, h, σ8) = (0.31, 0.676, 0.8)
33 BOSS DR12 0.51 0.453± 0.050 [414] 11/07/2016
34 BOSS DR12 0.61 0.410± 0.044 [414] 11/07/2016
35 Vipers v7 0.76 0.440± 0.040 [391] 26/10/2016 (Ωm,0, σ8) = (0.308, 0.8149)
36 Vipers v7 1.05 0.280± 0.080 [391] 26/10/2016
37 BOSS LOWZ 0.32 0.427± 0.056 [415] 26/10/2016 (Ωm,0, σ8) = (0.31, 0.8475)
38 BOSS CMASS 0.57 0.426± 0.029 [415] 26/10/2016

39 Vipers 0.727 0.296+0.075
−0.078 [416] 21/11/2016 (Ωm,0, σ8) = (0.31, 0, 0.7)

40 6dFGS+SnIa 0.02 0.428+0.048
−0.045 [417] 29/11/2016 (Ωm,0, h, σ8) = (0.3, 0.683, 0.8)

41 Vipers 0.6 0.48± 0.12 [418] 16/12/2016 (Ωm,0,Ωb,0, ns, σ8)= (0.3, 0.045, 0.96, 0.831)
42 Vipers 0.86 0.48± 0.10 [418] 16/12/2016
43 Vipers PDR-2 0.60 0.550± 0.120 [419] 16/12/2016 (Ωm,0,Ωb,0, σ8) = (0.3, 0.045, 0.823)
44 Vipers PDR-2 0.86 0.400± 0.110 [419] 16/12/2016
45 SDSS DR13 0.1 0.48± 0.16 [420] 22/12/2016 (Ωm,0, σ8)= (0.25, 0.89)

46 2MTF 0.001 0.51+0.09
−0.08 [421] 16/06/2017 (Ωm,0, σ8) = (0.3121, 0.815)

47 Vipers PDR-2 0.85 0.45± 0.11 [422] 31/07/2017 (Ωb,0,Ωm,0, h) = (0.045, 0.30, 0.8)
48 BOSS DR12 0.31 0.469± 0.098 [423] 15/09/2017 (Ωm,0, h, σ8) = (0.307, 0.6777, 0.8288)
49 BOSS DR12 0.36 0.474± 0.097 [423] 15/09/2017
50 BOSS DR12 0.40 0.473± 0.086 [423] 15/09/2017
51 BOSS DR12 0.44 0.481± 0.076 [423] 15/09/2017
52 BOSS DR12 0.48 0.482± 0.067 [423] 15/09/2017
53 BOSS DR12 0.52 0.488± 0.065 [423] 15/09/2017
54 BOSS DR12 0.56 0.482± 0.067 [423] 15/09/2017
55 BOSS DR12 0.59 0.481± 0.066 [423] 15/09/2017
56 BOSS DR12 0.64 0.486± 0.070 [423] 15/09/2017
57 SDSS DR7 0.1 0.376± 0.038 [424] 12/12/2017 (Ωm,0,Ωb,0, σ8) = (0.282, 0.046, 0.817)
58 SDSS-IV 1.52 0.420± 0.076 [425] 08/01/2018 (Ωm,0,Ωb,0 h

2, σ8) = (0.26479, 0.02258, 0.8)
59 SDSS-IV 1.52 0.396± 0.079 [426] 08/01/2018 (Ωm,0,Ωb,0 h

2, σ8) = (0.31, 0.022, 0.8225)
60 SDSS-IV 0.978 0.379± 0.176 [427] 09/01/2018 (Ωm,0, σ8) = (0.31, 0.8)
61 SDSS-IV 1.23 0.385± 0.099 [427] 09/01/2018
62 SDSS-IV 1.526 0.342± 0.070 [427] 09/01/2018
63 SDSS-IV 1.944 0.364± 0.106 [427] 09/01/2018

Table 2.1: The compilation of 63 RSD data that were published from 2004 to 2018, first presented in Ref. [70].

Obviously, many of the presented datapoints suffer from correlations due to the overlap in
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the galaxy samples used for their derivation. Therefore, instead of the extended sample, many
analyses [47,68,69,392,428–437] choose to select a small subsample of about 20 datapoints based
on subjective criteria that favor more recent data or a qualitative minimization of correlations
between the datapoints1. However, the use of ad hoc subsamples from the full fσ8 may lead
to a waste of useful information. So, we choose to utilize the full dataset to perform a more
detailed analysis to identify hidden trends of the best fit parameters appearing in different
cosmological models in the context of different subsamples, as well as to study the effects
of fiducial cosmology or correlation among datapoints, even though the extended covariance
matrix needed for their combined analysis is not available in the literature.

For the theoretical form of the fσ8(z), as discussed in the previous Chapter, it is essential to
solve (1.50) in the range a ∈ [0, 1] with initial conditions assuming GR and matter domination
(we set initially δ(a) ' a) and substitute the solution to (1.54). Regarding the parametrization
for Geff/GN we choose a phenomenological parametrization which may be viewed as an extended
Taylor expansion around a = 1 of the following form2 [68]

Geff = GN

[
1 + ga(1− a)n − ga(1− a)n+m

]
= GN

[
1 + ga

(
z

1 + z

)n
− ga

(
z

1 + z

)n+m
]
,

(2.10)
where ga is a phenomenological parameter and n,m correspond to integer parameters with
n ≥ 2 and m > 0. The values for n,m are essential assumptions since solar system tests [150]
and nucleosynthesis constraints at the 1σ level [439] imply∣∣∣ 1

GN

dGeff(z)

dz

∣∣∣
z=0

∣∣∣ < 10−3h−1 , (2.11)∣∣∣Geff

GN

− 1
∣∣∣ ≤ 0.2 . (2.12)

In what follows we choose to set n = m = 2.
Therefore, using (2.10) and taking into account the correction factor (2.6) we solve numer-

ically (1.50) in the context of a Planck15/ΛCDM background. The constructed solution for
fσ8(z), is compared with the fσ8(z) solutions obtained for a pure Planck15/ΛCDM [17] back-
ground cosmology (ga = 0), a pure WMAP7/ΛCDM [440] background cosmology (ga = 0), as
well as for the best fit ΛCDM case. The different solutions are illustrated in Fig. 2.2 super-
imposed with the RSD data of Table 2.1. Clearly, the pure WMAP7/ΛCDM background cos-
mology is more consistent with the full RSD data compilation than the pure Planck15/ΛCDM
background cosmology since the corresponding Planck15/ΛCDM curve is higher than the ma-
jority of the RSD data. Hence, the Planck15/ΛCDM background cosmology predicts a larger
fσ8 than the one favored by the data.

However, Eq. (1.50) can also be solved analytically. In the context of ΛCDM, there are
some complex analytical solutions of Eq. (1.50), expressed in terms of the Hypergeometric
functions [303,441–443]. A way to disregard the complex process of finding analytical solutions
is to use approximated parametrizations such as the “γ parametrization”. In the context of

1For a robust compilation of 22 RSD datapoints that was constructed using the so called “Internal Robust-
ness” method [438], see Ref. [71].

2Similar to Geff the effective Newton constant for lensing GL can defined. GL changes the lensing of light
through the sum of the Bardeen potentials φ + ψ. In the context of GR, GL = Geff = GN. Throughout this
Chapter GL is ignored, since only Geff appears in (1.50).
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Figure 2.2: Plot of the fσ8(z) solutions for various cases, including the full RSD dataset of Table
2.1. The red dashed line corresponds to a pure Planck15/ΛCDM [17] background cosmology
(ga = 0), while the green dashed line corresponds to a pure WMAP7/ΛCDM [440] background
cosmology (ga = 0). The blue dashed line describes the best fit ΛCDM (Ωm,0 = 0.28±0.02, σ8 =
0.78 ± 0.01) for the full RSD dataset. The red points correspond to the 20 earliest published
points, whereas the orange ones to the 20 latest published points. From Ref. [70] (see also
Ref. [73] for an updated version for the Planck18/ΛCDM case).

ΛCDM, it is well known [303, 444–448] that the growth rate f(z) is well approximated by a
parametrization of the form

f(a) = Ωm(a)γ(a) , (2.13)

Ωm(a) ≡ Ωm,0 a
−3

H2(a)/H2
0

, (2.14)

γ(a) =
ln f(a)

ln Ωm(a)
' 0.55 . (2.15)

In Ref. [70], a specific parametrization for fσ8(z) in analogy with the parametrization (2.13)
is discussed. In view of the fact that σ8(a) ∼ δ(a) ∼ a, in the context of a flat matter dominated
Universe it is natural to anticipate a parametrization of the form [70]

fσ8(z) = λσ8
Ωm(z)γ

(1 + z)β
, (2.16)

where

Ωm(z) =
Ωm,0 (1 + z)3

Ωm,0 (1 + z)3 + 1− Ωm,0

(2.17)
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Figure 2.3: The parametrization (2.16) for Planck15/ΛCDM [17] and WMAP7/ΛCDM [440].
The thick blue dots of the upper (lower) curve correspond to the numerical solution of fσ8(z)
for Planck15/ΛCDM (WMAP7/ΛCDM) superimposed with the analytic form (2.16) (red lines)
assuming GR, whereas the gray ones of the upper (lower) curve represent the numerical solution
of fσ8(z) for Planck15/ΛCDM (WMAP7/ΛCDM) superposed with the analytic form (2.16)
(green lines) for modified gravity, i.e. ga = −1. From Ref. [70].

and λ, β, γ correspond to parameters determined for a given cosmological model. Eq. (2.16)
provides an excellent fit to the numerical solution fσ8(z) as it is illustrated in Fig. 2.3, where the
numerical solution for fσ8(z) is shown (dotted lines) for Planck15/ΛCDM and WMAP7/ΛCDM
backgrounds, superimposed with the analytic form of (2.17) (continous red lines) for γ ' 0.78
and β ' 1 (see the caption for the exact parameter values of each case). Similarly, under the
assumption of modified gravity (ga = −1)3, the numerical solution (dotted lines) is shown in
the same figure for the same backgrounds H(z) superimposed with the corresponding analytic
parametrization (continuous green lines). The parametrization (2.16) continues to provide still
an excellent fit but for somewhat lower values of the parameters (β ' 0.84, γ ' 0.63).

Furthermore, we show the dependence of the parameters λ, β γ on Ωm,0 for both the GR and
modified gravity case where ga = 0 and ga = −1 respectively, in Fig. 2.4. The dots correspond
to the numerically obtained values and the continuous lines are power laws that describe the
dependence of the parameters on Ωm,0. In the range Ωm,0 ∈ [0.25, 0.35] and assuming GR
(ga = 0) we have γ = 0.78± 0.01, λ = 1.3± 0.1 and β = 1.03± 0.01.

3This particular value for ga is chosen since it is indicated that it can reduce the growth tension [68].

38



2.2. General Trends in the fσ8 Dataset

0.26 0.28 0.30 0.32 0.34

0.6

0.8

1.0

1.2

1.4

Ωm,0

P
ar
am
et
er
s

λ=0.64+
0.09

Ωm,0
0.4 for gα=0

β=0.98+
0.01

Ωm,0
1.2 for gα=0

γ=0.83+
0.19

Ωm,0
0.8 for gα=0

0.26 0.28 0.30 0.32 0.34

0.6

0.8

1.0

1.2

1.4

Ωm,0

P
ar
am
et
er
s λ=-0.61+

1.08

Ωm,0
0.1 for gα=-1

β=0.85 for gα=-1

γ=0.75+
0.10

Ωm,0
0.8 for gα=-1
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lines correspond to the best fit power laws for GR (left figure) where ga = 0 and modified
gravity (right figure) where ga = −1. From Ref. [70].

2.2 General Trends in the fσ8 Dataset

The full compilation of RSD data of Table 2.1 could be used to directly identify the best fit
form of the background cosmology H(z) as well as the best fit form of Geff(z) performing a fit to
the data as usually, i.e. applying the well known maximum likelihood method and constructing
a χ2 function [449, 450]. However, as we have already mentioned the derived results of such a
brute force approach should be interpreted with care, since they are affected by the following
factors that could possibly lead to incorrect results

• Correlations Among Datapoints: The fact that a complete covariance matrix for the full
RSD compilation of Table 2.1 is unknown creates an obvious uncertainty, even if someone
considers a subset from the full compilation.

• Fiducial Model Correction: The different fiducial cosmologies assumed for the RSD com-
pilation (see the last column of Table 2.1) may lead to misleading results and it should
be taken into account. A proper account of this effect would require a full reconstruction
of the correlation function under a Planck15/ΛCDM fiducial cosmology for all datapoints
of Table 2.1. An approximate solution (which is followed in our analysis) is to include an
AP correction such as the one of Eq. (2.6).

• Survey Systematics: Systematics of surveys that may vary with time of publication and
may lead to data inhomogeneities. It is only natural to assume that the more recent
published datapoints have reduced possible systematics that affect the measurements.

After applying the maximum likelihood method, we estimate the magnitude of these effects in
the derived best fit results.

In the context of the maximum likelihood method, the theoretical prediction of fσ8 can be
compared with the corresponding observations constructing the following χ2 function [449,450]

χ2(Ωm,0, ga, σ8) = V iC−1
ij V

j , (2.18)
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Figure 2.5: The 1σ − 4σ confidence contours in the parametric space (Ωm,0 − σ8) for ga = 0.
The blue contours correspond to the best fit of the 63 compilation data (left panel), the 20 early
data (middle panel) and the 20 late data (right panel). The light green contours correspond to
the Planck15/ΛCDM, while the red (green) dot describes the Planck15/ΛCDM (growth) best
fit, applying the maximum likelihood method. From Ref. [70].

where the vector V i is given by the following formula

V i(zi,Ωm,0, ga, σ8) ≡ fσ8,i −
fσ8(zi,Ωm,0, ga, σ8, ga)

q
(
z,Ωm,0,Ω

fidi
m,0

) (2.19)

and C−1
ij is the inverse covariance matrix. It is important to note here that for the construction

of the vector, we have divided the theoretical prediction fσ8(zi,Ωm,0, ga, σ8) by the correction
factor (2.6). The denominator is obtained from the fiducial ΛCDM model of each survey and
the numerator involves the Ωm,0 parameter to be fit by the data. We expect that this factor does
not differ from unity more than 2 − 3% and thus it leaves our best fit estimations practically
unaffected. Regarding the total covariance matrix, we assume that it is diagonal except of the
WiggleZ subset of the data (three datapoints) and has the following form

Cgrowth,total
ij =

 σ2
1 0 0 · · ·

0 CWiggleZ
ij 0 · · ·

0 0 · · · σ2
N

 , (2.20)

where the WiggleZ covariance matrix is given as

CWiggleZ
ij = 10−3

 6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

 (2.21)

and its non-diagonal elements can be approximated as Cij ' 0.5
√
CiiCjj. The form of Eq.

(2.20) is obviously an oversestimation as it ignores the existing correlations among different
datapoints.

Minimizing Eq. (2.18), as usual, we derive the best fit values of the parameters and construct
the relevant 1σ − 4σ confidence contours in the parametric space (Ωm,0 − σ8) using the full
dataset of Table 2.1 and setting ga = 0. This is illustrated in the left panel of Fig. 2.5 along
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Figure 2.6: The 1σ − 4σ confidence contours in the parametric space (Ωm,0 − σ8) for q ≡ 1
and ga = 0. The blue and light green contours correspond to the same as in Fig. 2.5. Clearly,
the qualitative behaviour that was previously observed for the tension level remains the same.
From Ref. [70].

with the corresponding Planck15/ΛCDM contours, where we can clearly identify a 5σ tension
between the relevant (Ωm,0 − σ8) best fits. The growth data favor lower values for both the Ωm,0

and σ8 parameters, indicating weaker clustering than the one indicated by Planck15/ΛCDM.
This behaviour can be achieved either by decreasing the value of Ωm,0 or by decreasing the
value of σ8 or by considering a decreasing Geff at low redshifts [68, 70]. Since the observed
tension is at quite a high level, we perform a comparison of the tension level of the earliest
and latest published RSD datapoints with Planck15/ΛCDM. This method can also work as
a consistency check of the full compilation of Table 2.1. In the middle panel of Fig. 2.5, we
show the 1σ− 4σ confidence contours in the parametric space (Ωm,0 − σ8) using the 20 earliest
published datapoints (top 20 points of Table 2.1) as well as the 1σ− 4σ confidence contours in
the parametric space (Ωm,0 − σ8) using the 20 latest published datapoints (bottom 20 points
of Table 2.1) in the right panel of Fig. 2.5. Even though the size of the confidence contours
increases due to the smaller number of datapoints, the tension level remains at about 4σ when
the early data are considered. On the contrary, the tension level decreases drastically when the
latest datapoints are considered (the tension drops below the 1σ threshold).

This general trend is quite an interesting feature and needs to be further investigated. This
dramatic decrease of the tension level can be attributed to the following:

• The considered fiducial cosmologies of the early datapoints that is different from the fidu-
cial cosmology (Planck15/ΛCDM) assumed in more recent studies. In order to estimate
this effect, we reconstruct the 1σ − 4σ confidence contours of Fig. 2.5 setting the cor-
rection factor q ≡ 1. The new contours are shown in Fig. 2.6 for the full compilation
(left panel), the 20 earliest RSD datapoints (middle panel) and the 20 latest (right panel)
RSD datapoints. Obviously, the tension level remains practically unaffected. The same
conclusion can be extracted if the correction factor q(z,ΩPlanck15

m,0 ,Ω′m,0) as a function of
the redshift z for different fiducial cosmologies is plotted (see Fig. 2.7). The difference
of q from unity is less the 3% for z < 1. This difference is significantly smaller than the
typical level of the errorbars of the RSD compilation and explains as a result the reduced
role of the fiducial model correction in the deduction of the tension level.
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Figure 2.7: The correction factor q(z,ΩPlanck15
m,0 ,Ω′m,0) as a function of redshift z, for different

fiducial cosmologies Ω′m,0. Its difference from unity is less than 3% for z < 1. From Ref. [70].

• The almost diagonal considered form of the covariance matrix (2.20) that assumes al-
most all the datapoints to be uncorrelated. The effect of any possible correlation among
datapoints can be determined, introducing a number of randomly selected non-diagonal
elements in the covariance matrix while keeping it symmetric. In this method, we ran-
domly select 12 pairs of datapoints (approximately 20% of the full data). The position
of the non-diagonal elements are randomly selected and the magnitude of the randomly
selected covariance matrix element Cij is set to be

Cij =
1

2
σi σj , (2.22)

where σi σj correspond to the published 1σ errors of the datapoints i, j. The coefficient
1/2 is chosen in analogy with the magnitude of the approximated formula of the WiggleZ
survey discussed above. Using this form for the covariance matrix, we construct the
1σ− 4σ confidence contours in the parametric space (Ωm,0 − σ8) in Fig. 2.8. Clearly, the
previous qualititative feature, i.e. a significant reduction of the level of the tension for
more recent RSD data, remains similar. It is interesting to note that in this case, even
though the tension level remains the same (at the 5σ level) for both the full and early
data, for the 20 most recently publiched datapoints the tension completely disappears (is
below the 0.5σ level). The sigma differences for all the contour cases are summarized in
Table 2.2.

• The increased redshifts of more recent datapoints that probe redshift regions where the
different ΛCDM models make similar predictions. This is shown in Fig. 2.9 (right panel)
where we plot the 20 point moving average (see definition below) of RSD redshifts de-
pending on time of publication as well as the 20 pont moving average of the errorbars as a
function of the publication time (left panel). The degeneracy in the redshifts is partially
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Corresponding Contours Full Dataset Early Data Late Data

Fig. 2.5 Contours 4.97σ 3.89σ 0.94σ
Fig. 2.6 Contours 5.44σ 4.36σ 0.97σ
Fig. 2.8 Contours 4.76σ 4.77σ 0.37σ

Table 2.2: The exact sigma differences from the Planck15/ΛCDM for Figs. 2.5, 2.6 and 2.8.
From Ref. [70].

Figure 2.8: The 1σ−4σ confidence contours in the parametric space (Ωm,0 − σ8) with a random
covariance among 25% of the datapoints (assumed to be correlated in pairs). The tension level
in all three panels remains approximately the same as in the previous figures. From Ref. [70].

due to matter domination that appears in all viable models at early times. Since more
recent survey move to higher redshifts and have larger errorbars the more recent data
are less powerful in distinguishing among different models. Although the increase of the
average redshift is to be expected due to the improvement of the sensitivity of the surveys,
the increased errorbars is an unexpected feature and deserves further investigation, since
there are claims that the RSD errorbars may be overestimated [66].

• The improved methods and reduced systematics may lead to stronger evidence in favor
of the concordance Planck15/ΛCDM model.

The trend for reduced tension of the growth data with Planck15/ΛCDM may also be
seen taking into consideration the residuals of the datapoints of Fig. 2.2 with respect to the
Planck15/ΛCDM RSD prediction. These residuals are defined as [70]

δfσ8(zi) ≡
fσ8(zi)

data − fσ8(zi)
Planck15

σi
(2.23)

and are plotted in the left panel of Fig. 2.10 ordered with respect to time of publication,
assuming Planck15/ΛCDM fiducial model corrections. We also illustrate the 20 point moving
average of these residuals in the right panel of Fig. 2.10 which is defined as [70]

fσ8j ≡
j∑

i=j−20

δfσ8(zi)

20
. (2.24)
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Figure 2.9: Left Panel: The 20 point moving average of RSD errorbars depending on time of
publication. Right Panel: The 20 point moving average of RSD redshifts depending on time of
publication. From Ref. [70].
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Figure 2.10: Left Panel: The residual of the data points assuming a Planck15/ΛCDM fiducial
model correction based on Eq. (2.23). Right Panel: The 20 points moving average defined by
Eq. (2.24) as a function of the time of publication. From Ref. [70].

Clearly, the consistency of the growth data with Planck15/ΛCDM significantly improves with
the time of publication.

Let us now return to the possible overestimation of the errorbars of the growth data. If the
errorbars of the growth data are indeed overestimated, then we expect the variance of the real
data to be significantly smaller than the variance of random (Monte Carlo) data. Therefore,
we construct 100 Monte Carlo realizations of the corresponding residual data, by assuming a
gaussian distribution with zero mean value and a standard deviation equal to the errorbar of
the real datapoint, for each Monte Carlo realization. The variance of the Monte Carlo data are
illustrated in Fig. 2.11 as red dots along with the corresponding variance of the real data which
is presented as a continues dashed line. The variance of the 100 Monte Carlo residual datasets is
σ2
MC = 0.0079±0.0015 while the variance of the real data residuals is σ2

RealData = 0.0030±0.055.

Clearly, the variance of the real data is significantly smaller than the variance of the Monte Carlo
simulations. This reduced variance however is also affected by the possible correlations/double
counting among these data. In order to estimate such effects, we artificially introduce double
counting in the Monte Carlo data by enforcing 25% of the datapoints to have an identical
corresponding datapoint in the Monte Carlo dataset. The corresponding results of this method
are also illustrated in Fig. 2.11 as blue points. In this case, the variance of the Monte Carlo data
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Figure 2.11: The variances of 100 Monte Carlo datasets. The red dots correspond to the vari-
ance of a Monte Carlo residual dataset with uncorrelated data, while each blue dot provides the
variance of a residual dataset with 25% double counted datapoints (12 identical pairs of data-
points). The red square point describes the mean value of the uncorrelated data variances with
the standard deviation, whereas the blue triangular point is the mean value of the correlated
data variances with one standard deviation. From Ref. [70].

is σ2
MC = 0.0077 ± 0.0023, a value that is still significantly larger than the real data variance.

As a result, we conclude that a moderate level of double counting is not enough to explain the
reduced spread of the real data. This implies that either the errorbars of the growth data are
truly overestimated or there are possible systematic effects the prevent data from having the
anticipated spread from the errorbars.

2.3 Implications for the Phenomenological Parametriza-

tion (2.10)

2.3.1 Implication for the Phenomenological Parameter ga

In the previous section we saw that more recent growth data are much more consistent
with the Planck15/ΛCDM parameter values, since the level of tension drops significantly. This
trend of reduced tension for the growth data would also affect the effective Newton’s constant
Geff which we consider to have the form of the paremetrization (2.10). This trend can be
well quantified by the parameter ga, due to the fact that for ga = 0 we reduce to the stan-
dard GR case. Assuming a Planck15/ΛCDM background, we fit the theoretically predicted
fσ8(z,ΩPlanck15

m,0 , σPlanck15
8 , ga) obtained from Eqs. (1.50) and (1.54) to the full compilation (red

square point in Fig. 2.12) presented in Table 2.1 as well as to the 20 earliest and recent subsets
in order to identify the corresponding value of the parameter ga starting starting from the
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Figure 2.12: The evolution of the best fit of the parameter ga with time of publication, super-
imposed with the 1σ range using the full RSD compilation presented in Table (2.1). Every blue
point corresponds to the best fit of ga obtained from a 20 point RSD subsample, starting from
the earliest (first blue point on the left) to the latest (last blue point on the right) subsample.
The red square point describes the best fit of ga obtained from the full dataset along with its
1σ errorbar. From Ref. [70].

earliest to the latest subsample (blue points).
The 1σ range for ga for the full compilation is ga = −0.91± 0.17. The 20 point subsamples

best fit for ga, begin from ga = −1.28+0.28
−0.26 (the earliest subsample) which is more than 4σ

away than the GR predicted value (ga = 0) and ends with the subsample of the 20 most
recent datapoints which gives ga = −0.43+0.46

−0.41, a value consistent with the GR prediction since
the difference is approximately at the 1σ level. It is important to note here that for all the
subsamples, the growth data hint towards a negative value for ga. Therefore, from the form of
(2.10) we see that at high redshifts where the third term dominates Geff > GN, while at low
(and intermediate) redshifts the second term dominates leading to Geff < GN. Hence we deduce
that in order to optimize the fit to the growth data we either need to modify the background
H(z) [e.g. lowering the Ωm,0 and/or the σ8 parameter value) or by lowering the strength of
gravity at low z [e.g. considering a modified gravity theory in the context of which Geff < GN

at low z, such as the phenomenological form of (2.10)].

2.3.2 Implications for the Growth Index γ

A decreasing Geff at low z, exhibits also a characteristic behavior in the growth index γ.
In the context of ΛCDM, the growth index is nearly constant as it is indicated by (2.15). For
modified gravity theories however, γ departs from this quasi-constant behaviour [451] and can
be written at low z as [452]

γ(z) = γ(0) + γ′(0) z = γ0 + γ′0 z . (2.25)
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2.3. Implications for the Phenomenological Parametrization (2.10)

A similar differential equation as (1.50) can be constructed for the growth rate f(a). Using its
definition, Eq. (1.50) takes the form [444,446,448,452,453]

df

d ln a
+ f 2 +

1

2

(
1− d ln Ωm

d ln a

)
f =

3

2

Geff

GN

Ωm , (2.26)

where Ωm is given by Eq. (2.14). Substituting (2.15), Eq. (2.26) takes the form

2 ln Ωm
dγ

d ln a
+ (2γ − 1)

d ln Ωm

d ln a
+ 1 + 2Ωγ

m − 3
Geff

GN

Ω1−γ
m = 0 . (2.27)

Hence, knowing the background expansion and the Ωm,0 value we can calculate γ for a specific
form of Geff , since we are left with a simple first order differential equation [446,452,453].

In order to solve the differential equation, we need to fix the initial condition in the past
in order to find γ(z). We choose to set γ0 ≡ γ(0) and γ′0 ≡ γ′(0), for each (ga, n) pair. It is
important to note here that the initial conditions (in the past) are essentially irrelevant at the
present time because of the presence of an attractor, so we get the same behavior at late time.
At z = 0, Eq. (2.27) in the context of a Planck15/ΛCDM background is written as

γ′0 =
1

2 ln Ωm,0

[
3(2γ0 − 1)(Ωm,0 − 1) + 1 + 2Ωγ0

m,0 − 3
Geff(0)

GN

Ω1−γ0

m,0

]
. (2.28)

In our case, by definition, we have Geff(0) = GN thus irrespective of the value of ga we obtain a
linear relation between γ′0 and γ0 (in consistency with the results of Ref. [446]), that is illustrated
in Fig. 2.13.

Figure 2.13: The linear relation that connects γ′0 and γ0 irrespectively of the values of ga and
n and a fixed background to Planck15/ΛCDM. From Ref. [452]. For the reproduction of this
figure visit the following dropbox link.

For completeness, we also provide the values of the pair (γ0, γ
′
0) corresponding to the parameters

(ga, n) with n ≤ 6 that are favored by the “Gold-2017” RSD data compilation presented in
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n ga γ0 γ′0

0.343 −1.200 0.686 0.398
2 −1.156 0.629 0.219
3 −1.534 0.620 0.189
4 −2.006 0.615 0.174
5 −2.542 0.612 0.165
6 −3.110 0.611 0.160

Table 2.3: The corresponding values of (γ0, γ
′
0) for various best fit (n, ga) pairs favored by the

RSD compilation presented in Ref. [68].

Ref. [68]. For each value of n, the best fit value of ga is shown in Table 2.3. Hence for each
best fit of ga we can identify the corresponding best fit form of Geff .

2.4 Implications for Specific Modified Gravity Models

The trend of growth data that seem to favor weaker gravity at low z is a unique feature that
shows significant promise for a discrimination between different cosmological models and needs
further investigation. It would be interesting to see if any of the most well known modified
gravity models such as the ones discussed in Chapter 1 can support such a behavior. A naive
approach would be to assume that any modified theory of gravity can lead to Geff < GN at
low z for specific parameter values. However, as we argue in the following subsections this is
not the case for at least two prominent and intensively studied examples of modified gravity
theories such as the f(R) [448,452] and scalar tensor theories [452].

2.4.1 f(R) Gravities

In the context of f(R) gravity theories, we recall Eq. (1.90) from Chapter 1 which gives the
predicted form for Geff as [300]

Geff(k, z) = GN


(
df

dR

)−1
1 + 4

(
d2f
dR2/

df
dR

)
· k2 (1 + z)2

1 + 3
(
d2f
dR2/

df
dR

)
· k2 (1 + z)2

 .

In the literature, another alternative form for Geff has been proposed including λc, i.e. the
Compton wavelength of the scalaron [169]

Geff(k, z) = GN


(
df

dR

)−1
1 +

(
λc
λ

)2

3
(

1 +
(
λc
λ

)2
)
 , (2.29)

where λ = a(t)/k and λc ≡ 3 d2f
dR2/

df
dR

for consistency with (1.90). In viable f(R) models, all

relevant cosmic scales satisfy λ � λc, with df
dR

= 1 to high accuracy, deep in the matter era
regaining as a result the usual growth of perturbations during that era.
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As we discussed in the Introduction, in order to ensure the stability of scalar perturbations
in order to avoid ghost instabilities the d2f

dR2/
df
dR

should be positive. Therefore, the factor in
front of the brackets increases when R decreases with the expansion, and thus it is always
larger than unity. Moreover, the bracket expression is obviously always larger than one too.
At low redshifts, as the critical length λc increases significantly with the decrease of matter
density and of the Ricci scalar R, the expression inside the brackets can become as large as
4
3

in the present era on scales λ � λc. Hence, the growth of matter perturbations on these
scales will be enhanced compared to the standard growth. Note that this does not exclude
the possibility for Geff to evolve non monotonically as a function of z. Indeed, Geff can, and
generically does, increase with z on some interval in the present era, however always satisfying
Geff > GN. Therefore, the f(R) modified gravity theories support stronger gravity at low z
than GR, hence unable they are unable to resolver the growth tension, independently of the
form of the background H(z) [452].

2.4.2 Scalar Tensor Theories

On the contrary, this is not the case if we consider standard scalar tensor theories as described
in Chapter 1. In the context of scalar tensor theories, starting from an action of the form of
Eq. (1.80), we derive the effective Newton’s constant to be [146,147]

Geff(z) = GN

 1

F (z)

F (z) + 2
(
dF
dφ

)2

F (z) + 3
2

(
dF
dφ

)2

 ,

i.e. Eq. (1.85). Defining the rescaled square Hubble parameter as [68,148]

q(z) =
H2(z)

H0

, (2.30)

it is straightforward to show that Eq. (1.84) takes the form [68,72,148,295]

F ′′(z) +

[
q′(z)

2q(z)
− 2

1 + z

]
F ′(z)− 1

(1 + z)

q′(z)

q(z)
F (z) + 3

1 + z

q(z)
Ωm,0 = −φ′(z)2 , (2.31)

where in this case the primes denote differentiation with respect to the redshift z.
In the present analysis, we mainly focus on the low redshift regime, so we can Taylor expand

the evolving Newton’s constant (keeping terms up to second order) as

Geff(z) ≈ Geff(0) +G′eff(0) z +G′′eff(0)
z2

2
+ . . . . (2.32)

Taking into account the inequality for the first derivative of the effective Newton’s constant
induced by solar system test, i.e. Eq. (2.11), the calculations are massively simplified, since
(2.32) reduces to

Geff(z) ≈ Geff(0) +G′′eff(0)
z2

2
+ . . . . (2.33)

Therefore, setting GN = F (0) = 1, F ′(0) ≈ 0 and differentiating (1.85) with respect to the
redshift z, we deduce

G′′eff(0) = F ′′(0)

(
−1 +

F ′′(0)

φ′(0)2

)
. (2.34)
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Figure 2.14: The second derivative of Geff(0) in the parametric space of φ′(0) and w for Ωm,0 =
0.3. The brown (blue) regions correspond to the parameter values for G′′eff(0) > 0 (G′′eff(0) < 0),
while the red straight line describe the ΛCDM case, where wΛ = −1. From Ref. [452]. For the
reproduction of this figure visit the following dropbox link.

In the context of wCDM background the rescaled square Hubble parameter based on (1.69), is
written as

q(z) = Ωm,0(1 + z)3 + (1− Ωm,0) (1 + z)3(1+w) . (2.35)

Therefore, the second derivative of Geff takes the following form [72,452]

G′′eff(0) = 9(1 + w)(−1 + Ωm,0) +
9(1 + w)2(−1 + Ωm,0)2

φ′(0)2
+ 2φ′(0)2 . (2.36)

Eq. (2.36) is quite interesting since it is considerably simplified in the context of a ΛCDM
background, i.e. for a value wΛ = −1, yielding [72,452]

Geff(z) ≈ Geff(0) +
1

2
G′′eff(0) z2 + . . . = GN +

1

2
G′′eff(0) z2 + . . . = 1 + φ′2(0) z2 + . . . . (2.37)

Clearly, Geff(z) will increase rather than decrease in the past on low redshifts assuming that
the kinetic term of φ′(z) is always positive, a crucial requirement for a self consistent theory.
It is possible however to get a decreasing Geff(z) if one moves away from a ΛCDM background
towards higher values of w for either a positive or a negative value of φ′(0). This is shown in
Fig. 2.14, where G′′eff(0) < 0 (blue regions) can only be achieved for w > −1 for a fixed value
Ωm,0 = 0.3 (this behavior however remains valid for different values of Ωm,0). The presented
results assume that G′eff(0) ' 0 due to solar system constraints. In the presence of screening
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2.5. Constraints of the Evolving Newton’s Constant from Low l CMB and the Integrated
Sachs Wolfe Effect

this assumption may not be necessary as in that case the cosmological behavior of Geff gets
decoupled from the corresponding behavior in the solar system where the mean curvature and
density are significantly larger than in cosmological scales. However, as we have seen with f(R)
models, this does not necessarily imply that a decreasing Geff(z) is allowed and actually in these
models, it is not allowed.

2.5 Constraints of the Evolving Newton’s Constant from

Low l CMB and the Integrated Sachs Wolfe Effect

If the Newton’s constant is indeed evolving with redshift, resolving as a result the growth
tension, then we would expect to find similar hints to other geometrical and/or dynamical
probes. For example, such an evolution would lead to an evolution of the degenerate combi-
nation M ≡ M − 5 log10(h) + 42.38 of SnIa, where M corresponds to the absolute magnitude
and h ≡ H0/100 kms−1Mpc−1 [73, 454–458]4. Also, a possible evolution of Geff(z) would af-
fect [68,459] the low l CMB angular power spectrum due to the Integrated Sachs Wolfe (ISW)
effect [460, 461]. The ISW effect is created when the CMB photons escape from time varying
gravitational potential which would be modified due to the evolving Geff(z).

The construction of the CMB power spectrum analytically is a quite tedious process, since
we need to take into account all particle species and calculate how the perturbations affect
particle distributions by solving the Boltzmann equations, calculate the ∆T/T anisotropies
and expand in spherical harmonics. The unintegrated Boltzmann equation has the following
general form [298]

df

dt
= C[f ] , (2.38)

where f corresponds to the distribution function. The right hand side contains all possible
collision terms (e.g. the Compton scattering) and should be evaluated up to the first order for
the line element (1.52). Fortunately, over the years, some numerical codes have been developed
that perform such a task and numerically calculate the CMB and large scale structure observ-
ables, such as the Code for Anisotropies in the Microwave Background (CAMB) [462] and
the Cosmic Linear Anisotropy Solving System (CLASS) [463,464] codes. As we mentioned
earlier, many modified gravity theories have been proposed in the literature as ΛCDM alter-
natives, leading as a result to the development of appropriate patches [such as the Modified

Growth with CAMB (MGCAMB) [465–467] and the hi class [468,469] patches] in the aforemen-
tioned codes5. Utilizing the 2019 version of the MGCAMB numerical package [467] we fix the
background H(z) to the best fit Planck15/ΛCDM [17], use the parametrization (2.10) as the
effective Newton’s constant and construct the corresponding CMB angular power spectrum for
various values of ga as it is illustrated in Fig 2.15 superimposed with the Planck15 datapoints
(blue points). Clearly, the low l Planck data show that even though modified gravity with an
effective Newton’s constant of the form of Eq. (2.10) is not excluded, they do not allow for
significant variations of ga entailing strong constraints in it.

In order to fully constrain the values of the predicted observables, CAMB works in tandem
with the MCMC sampler Cosmological MonteCarlo (COSMOMC) [470, 471]. A similar patch
as the MGCAMB is developed for COSMOMC called MGCOSMOMC [465–467] that sets constraints on

4See Chapter 4 for an extensive discussion on this subject.
5For more details about recent Boltzmann codes, see Appendix B.
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Figure 2.15: The CMB Planck 2015 power spectrum for different values of ga using MGCAMB [467].
The low l data show that a modified gravity with an effective Newton’s constant of the form
of Eq. (2.10) is possible. From Ref. [73].

modified growth along with dark energy parameters using various cosmological data. Utilizing
its 2019 version [467] we derive the constraints for the ga parameter. In particular, fixing the
majority of the parameters to the corresponding Planck15/ΛCDM values [17] except from the
(Ωm,0, σ8, H0) that are free to vary we obtain the 1σ − 2σ confidence contours shown in Fig.
2.16.

Even though negative values of ga are mildly favored, this parameter is significantly con-
strained by the CMB data [68] to be larger than −0.1 at a 3σ level. This range is at odds
with the findings of the RSD compilation discussed above indicating that tension of the growth
data with Planck15/ΛCDM can only be partially physical [452]. At least part of this tension
is probably due to systematic effects of the growth data.

2.6 In Brief

In this Chapter we have constructed an updated compilation (63 datapoints) of distinct
RSD data that have been published by several redshift surveys and are presented in Table
2.1. Even though this dataset is plagued by correlations among datapoints and possible double
counting it is still useful in identifying general trends of the data as well as the sensitivity
of the best fit parameters to the fiducial model corrections and to correlations among the
datapoints. Considering various subsamples from the full dataset, we have demonstrated that
the consistency of the growth data with Planck15/ΛCDM improves significantly with time.
In particular, for the growth data that are published in the last couple of years, the tension
with Planck15/ΛCDM reduces even below the 1σ threshold, in contrast to data before 2016 for
which the tension ranges from 3σ − 5σ (depending on the selected subset).
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Figure 2.16: The 1σ−2σ confidence contours constructed using the MGCOSMOMC [467] package for
the Planck15/ΛCDM CMB data [17], in the context of the parametrization (2.10) and setting
n = m = 2. From Ref. [73].

This trend for reduced tension of the growth data with Planck15/ΛCDM is quite an inter-
esting feature. If this trend is not due to some unknown systematic effect, it naturally leads to
hints for an evolving effective Newton’s constant Geff(z). Even though a partial cause for this
reduced tension is obviously due to the fact that more recent data tend to probe higher red-
shifts (with higher errorbars) where there is degeneracy among different models due to matter
domination, all the considered RSD subsamples seem to prefer a ga < 0 value, implying a de-
creasing function of Geff(z) with respect to the redshift z. Furthermore, we have demonstrated
that a parametrization such as (2.16) provides an excellent fit to the product fσ8(z) in both
GR (ga = 0) and in modified gravity theories (ga 6= 0).

Moreover, we have studied the consequences of a decreasing Geff with redshift to the growth
index γ. The required behavior for Geff assuming a ΛCDM background exhibits a characteristic
signature in the corresponding growth index γ. In particular, for the parametrization (2.10)
with n ≤ 6 a growth index parametrization (2.25) gives 0.61 ≤ γ0 ≤ 0.69 and 0.16 ≤ γ′0 ≤ 0.4
according to Table 2.3. We have further studied the implications of a decreasing function of
Geff(z) with respect to the redshift z for two of the most prominent and intensively studied
modified gravity models, such as the f(R) and scalar tensor theories. In the context of f(R)
modified gravity theories the effective Newton’s constant is given by Eq. (1.90) and it is clear
from its form that in order to ensure the absence of ghost instabilities Geff > GN irrespective
of the background expansion H(z). On the contrary, for the scalar tensor theories a decreasing
Geff at low redshifts is only possible if w > −1 and can not be realized in the context of a
ΛCDM background.

Finally, we have discussed the consequences of a decreasing Geff with redshift to other
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geometrical and/or dynamical probes. Such a behaviour affects the low l CMB angular power
spectrum due to the ISW effect. Utilizing the MGCAMB and MGCOSMOMC numerical codes for the
parametrization (2.10), we derived strong constraints regarding the phenomelogical parameter
ga, showing that the Planck data mildly favor a Newton’s constant that is weaker at low z
compared to GR.
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Chapter 3
Constraining Power of Cosmological
Observables: Blind Redshift Spots and Optimal
Ranges

ΛCDM is currently under intense investigation in the last twenty years using a wide variety of
cosmological surveys in an attempt to identify any hidden unexpected features and signatures of
theories beyond the concordance model. A general trend of the ongoing and future cosmological
surveys is to focus in redshift ranges that are larger than the redshift ranges of the earlier
surveys. In theory, this trend seems to be in the right direction for the identification of any
possible hidden signals of a modified theory of gravity. However, it entails an assumption of an
increasing constraining power of observables on cosmological parameters with redshift, which
is not true in all cases.

Previous works [472,473] considering older growth compilations, have identified interesting
degeneracies of the fσ8(z) observable with respect to the equation of state parameter wDE
at z ≈ 1.7 and that the optimal range is in the redshift range z ∈ [0.1, 1.5]. Furthermore,
in Fig. 2.2 we saw that for z > 1.5 the different models make similar predictions due to
matter domination, so it is only natural to wonder if a similar behavior is apparent to other
cosmological parameters. In this Chapter we extend the results of the previous works [472,473]
to a more broad range of cosmological observables.

At first, we consider the sensitivity of the fσ8(z) observable on the cosmological parameters
Ωm,0, w and the extra parameter ga that appears in the phenomenological parametrization
(2.10), using the extensive compilation presented in Table 2.1 of Chapter 2. The parameter
w corresponds to a wCDM background, i.e. to a model with a constant equation of state
wDE ≡ w. Next after carefully scanning the literature for BAO data and constructing a
similar compilation, we identify the sensitivity of the relevant BAO observables on the same
cosmological parameters as before. Finally, we focus on SnIa and their luminosity distance
modulus as well as on the gravitational wave distance modulus and repeat the same analysis.
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Figure 3.1: The variation (3.1) for O = fσ8 as a function of redshift z, for ga values ga ∈
[1.5,−1.5]. Also, we include the compilation of Table 2.1 showing the 20 earliest growth data
of the compilation (left panel), the 20 latest growth data of the compilation (middle panel) as
well as the full compilation (right panel). From Ref. [474].

3.1 Growth of Density Perturbations: The Observables

fσ8(z) and f (z)

Based on the analysis presented in Chapter 1 and in particular based on Eq. (1.54), it is
easy to derive the evolution of the fσ8(z) and f(z) observables for the parameters Ωm,0, w and
ga around the corresponding Planck15/ΛCDM parameters

(
ΩPL

m,0 = 0.31, w = −1 and ga = 0
)
.

For each observable O, we construct the following variations

∆Oga ≡ O(ΩPL
m,0,−1, ga)−O(ΩPL

m,0,−1, 0) , (3.1)

∆Ow ≡ O(ΩPL
m,0, w, 0)−O(ΩPL

m,0,−1, 0) , (3.2)

∆OΩm,0 ≡ O(Ωm,0,−1, 0)−O(ΩPL
m,0,−1, 0) (3.3)

and as observables for the case of the growth data we consider either O ≡ fσ8(z) or O ≡ f(z).
In Fig. 3.1 we consider the variation (3.1) for the parameter values ga ∈ [−1.5, 1.5] for

the fσ8(z) observable. Moreover, we include the growth compilation presented in Table 2.1
applying no fiducial model correction and following the methods of the previous Chapter, we
colour-code the data (data published before 2015 as red, data published after 2016 as orange
and the full compilation as blue). As we can see from the left panel, the early growth data
(red points) favor weaker gravity, i.e. negative values for ga, around z ' 0.5 in consistency
with the results of Fig. 2.12. Furthermore, we clearly see from all panels that the observable
fσ8(z) presents a blind spot with respect to the parameter ga at z ' 2.7, a value close to the
one repored by previous studies [472] for a similar gravitational strength parameter. On the
contrary, the optimum redshift region is around z ' 0.5 for the parameter ga, indicating that
more recent probes that measure fσ8(z) at larger redshifts, in reality approach the blind spot
region. As a result, the newest datapoints have reduced sensitivity in identifying any deviations
from Geff . In Figs. 3.2 and 3.3 we consider the variations (3.2) and (3.3) for the observable
fσ8(z) for w ∈ [−1.5, 0.5] and Ωm,0 ∈ [0.25, 0.35]. From these figures we find similar conclusions
as before. More recent data approach the blind spot for both the parameters w and Ωm,0, in
contrast to earlier data.

However, the identification of an optimal redshift range in which the constraining power is
maximum or minimum can not be solely addressed by pinpointing where the blind spots and
optimal redshift ranges are. The constraining power depends also on the number of modes that
are sampled by the survey, i.e. on the effective survey volume Veff(k, z). The effects of the
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Figure 3.2: Same as Fig. 3.1 for the w values w ∈ [−1.5,−0.5]. From Ref. [474].
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Figure 3.3: Same as Fig. 3.1 for the Ωm,0 values Ωm,0 ∈ [0.25, 0.35]. From Ref. [474].

survey volume can be quantified through the “sensitivity” measure [474]. For a specific k mode
of the power spectrum P (k, z) the effective survey volume probed for this particular k mode is
given by

Veff(k, z) = ∆Ω

∫ z

0

[
n(z′)P (k, z′)

1 + n(z′)P (k, z′)

]2
dV

dz′ dΩ
dz′ , (3.4)

where z in the upper limit of the integral corresponds to the maximum redshift of the effective
survey volume Veff(k, z) and ∆Ω is the sky area of the survey. The ratio

dV

dz dΩ
=
χ2(z)

H(z)
(3.5)

describes the infinitesimal comoving volume element for a FLRW Universe and χ is given by
(1.41), while the number density n(z) of the detected galaxies is calculated as

n(z) =

∫ ∞
Mlim(z)

dN

dV dM
dM (3.6)

and the function Mlim(z) is the limiting mass threshold which is detected for the given survey.
The typical error σP of the measurement of the power spectrum P (k, z) for a given mode k

is [475–478] (
σP

P (k, z)

)2

=
2

4 π k3∆(ln k)

(2π)3

Veff(k, z)

[
1 + n(z)P (k, z)

n(z)P (k, z)

]2

, (3.7)

demonstrating that the error σP increases as the effective survey volume Veff(k, z) decreases.
Therefore, since the typical error σP is inversely proportional to

√
Veff(k, z), the “sensitivity”

measure for an observable O is defined as [474]

SOp ≡
∆O(p)

∆p

√
Veff(k, z) , (3.8)
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Figure 3.4: The “sensitivity” measure (3.8) for the parameters p = ga, p = w and p = Ωm,0.
From Ref. [474].

where ∆O is the deviation of the observable O for a given parameter p that varies in a fixed
small range ∆p = pmax − pmin around a fiducial model value (e.g. Planck15/ΛCDM). Fixing k
in such a way that np = 3 assuming sufficient signal to noise per pixel [478] and rescaling the
“sensitivity” S so that is unity at its maximum absolute value, we construct the plot of the
“sensitivity” measure S for the fσ8(z) observable with respect to ga, w and Ωm,0. This plot is
demonstrated in Fig. 3.4 and the corresponding blind spots are illustrated as the points were
S = 0, i.e. the roots of the sensitivity measure whereas the corresponding optimum redshift
region is illustrated as the extrema (maximum or minimum values) of S.

Obviously, all three panels present both blind spots and optimum redshift regions. Accord-
ing to Fig. 3.4, for the parameter ga the blind spot is at z ' 2.6, while the optimum redshift
region is at z ' 1.2. For the parameter w the blind spot is detected close to z ' 2, while the
optimum redshift region is at z ' 0.8. For the parameter Ωm,0 the blind spot is pinpointed
close to z ' 1, while the optimum redshift region is close to z ' 0.51. It is important to note
here that when incorporating the effects of the effective survey volume, the optimum redshift
region shift to somewhat higher redshifts while the blind spots remain unchanged.

A similar study can be implemented for the growth rate f(z) observable [see Eq. (1.54)]
using the mock data of the Euclid survey that have been presented in Ref. [479]. The Euclid
mission, that aims to study the nature of dark matter dark energy and gravity measuring galaxy
clusters up to redshifts z ' 2, indicated that the large number of galaxy clusters and its depth
will allow a reliable simultaneous estimate of the bias b and of the growth rate f(z) through
the redshift distortion β that is defined as

β(z) =
f(z)

b(z)
. (3.9)

Therefore, the mission has the ability to directly probe the bias free combination fσ8(z) and
the growth observable f(z). Of course, what is actually observed is the redshift distortion
β parameter which is obtained through the ratio between the monopoles of the correlation
functions in real and in redshift space, so the identification of the blind spots and the optimum
redshift regions remain valid assuming that the bias b(z) has a weak dependence on the redshift
z.

The deviation of the observable f(z) [recall Eqs. (3.1)-(3.3)] for the parameters p = ga (left
panel), p = w (middle panel) and p = Ωm,0 (right panel) superimposed with the mock Euclid
data assuming a Planck15/ΛCDM fiducial model and their 1σ errors [479] are illustrated in

1Even though the redshift region z > 2 seems an area with better sensitivity for all the parameters, there
are currently almost no RSD data available in this redshift range.

58



3.2. Baryon Acoustic Oscillations: The DV (z)× rfids
rs

, H × rs
rfids

and DA × rfids
rs

Observables

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.10

-0.05

0.00

0.05

0.10

z

Δ
f(
z)

ga=0.5

ga=-0.5

0 1 2 3 4 5
-0.15

-0.10

-0.05

0.00

0.05

0.10

z

Δ
f(
z)

w=-1.5

w=-0.5

0 1 2 3 4 5
-0.10

-0.05

0.00

0.05

0.10

z

Δ
f(
z)

Ωm,0=0.35

Ωm,0=0.25

Figure 3.5: The variations (3.1)-(3.3) for O = f as a function of redshift z for the same
parameters limits as before. We also include the mock data of the Euclid survey as presented
in Ref. [479]. From Ref. [474].

Fig. 3.5. Clearly, the predicted redshift range of the Euclid data is ideal for the parameter ga,
in contrast for the matter density parameter Ωm,0 or for w especially if w < −1.

3.2 Baryon Acoustic Oscillations: The DV (z)× r
fid
s
rs

, H× rs

r
fid
s

and DA × r
fid
s
rs

Observables

3.2.1 BAO Observables and their Variation with Cosmological Pa-
rameters

At the beginning of cosmological time, the Universe was in a very hot and dense state
where the dark matter, baryons, photons and neutrinos were all coupled constituting a thermal
plasma. In this state photons were tightly coupled to the electrons via Compton scattering while
the neutrinos moved very fast and did not interact at all. As the time passed, the baryons were
drawn in high density regions due to gravity while at the same time the photons tried to free
streaming out of these high density regions. However, since they were coupled in a baryonic-
photon fluid a shock was induced that formed spherical shells of a baryonic-photon fluid that
oscillated as spherical sound waves. At recombination, i.e. when the redshift is z ≈ 1300, the
Universe cooled down enough so that the protons and electrons combined, forming the first
hydrogen atoms through the following reaction

e− + p+ ↔ H + γ (3.10)

and the photons free streamed leaving the shells of baryons “frozen” in spacetime. Dark matter
did not follow the same process and was just attracted and eventually fell in the high density
regions. Therefore after recombination we are left with high densities of dark matter at the
centre of the overdense regions which are surrounded by shells of baryons. This is illustrated
in Fig. 3.6.

This procedure, that was first reported in Refs. [481,482], inflicts a characteristic BAO scale
that appears either as a peak in the galaxy correlation function or equivalently as damped
oscillations in the large scale structure power spectrum. The angular scale of the sound horizon
θs at the drag epoch, i.e. at cosmological times shortly after recombination when photons
decouple from baryons, is a measurable quantity that can be adopted to probe the Hubble
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Figure 3.6: An illustration of the radial mass profile of perturbation as a function of the
comoving radius of an initially point like overdensity located at the origin for various redshift
values. The top subfigures correspond to early cosmological times before recombination, the
middle subfigures correspond to redshifts a little bit after recombination, while the bottom
subfigures correspond to cosmological times long after recombination. The black, blue, red and
green lines correspond to the dark matter, baryons, photons, and neutrinos respectively From
Ref. [480].

expansion rate through the standard ruler equation that yields [483]

θs =
rs

(1 + z) dA
, (3.11)

where dA is the angular diameter distance defined in (1.46) and rs corresponds to the radius of
sound horizon at last scattering that is defined as [46]

rs =

∫ ∞
zd

cs(z)

H(z)
dz . (3.12)

The lower limit of (3.12) corresponds to the drag redshift zd that can either be calculated
through a numerical package, e.g. CAMB or using the approximate formula provided by [484]

zd =
1291(Ωmh

2)0.251

1 + 0.659(Ωmh2)0.828

[
1 + b1(Ωb h

2)b2
]
, (3.13)
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Figure 3.7: The variations (3.2) (left panel) and (3.3) (right panel) for O = DV ×
(
rfids /rs

)
as

a function of redshift z. We also include the BAO data DV (z) ×
(
rfids /rs

)
presented in Table

D.1 in the Appendix D. From Ref. [474].

with

b1 = 0.313(Ωmh
2)−0.419

[
1 + 0.607(Ωmh

2)0.674
]
, (3.14)

b2 = 0.238(Ωmh
2)0.223 . (3.15)

The numerator of (3.12), i.e. cs(z), is the sound speed of the baryonic-photon fluid

cs(z) =
c√

3
(

1 + 3Ωb
4Ωγ

1
1+z

) . (3.16)

So, substituting (3.16) in (3.12), it is straightforward to show that the radius of the sound
horizon is written as

rs(z) =
c√
3

∫ ∞
zd

dz

H(z)
√

1 + 3Ωb
4Ωγ

1
1+z

. (3.17)

It is important to note here that Eq. (3.17) should be multiplied by a correction factor of
154.66/150.82 in order to achieve consistency with the more accurate numerical estimate [485].
Deviation of cosmological parameters can change the sound horizon rs, hence BAO measure-
ments in reality constrain specific combinations. In particular, they constrain the combinations

DA(z)× rfids
rs

and H(z)× rs
rfids

, where DA(z) = dA(z) is the angular diameter distance and rfids
corresponds to the fiducial cosmology assumed in the construction of the large scale structure
correlation function. Another BAO measurement that is commonly published in the literature,
is the following combination

DV (z)× rfids
rs

=
[
c z D2

M(z)/H(z)
]1/3 × rfids

rs
, (3.18)

where DM(z) = (1 + z)DA(z) [486]. Using (3.17) and assuming a Planck15/ΛCDM fiducial
cosmology (k = 0, h = 0.676 and rfids = 147.49Mpc) it is easy to construct the theoretically
predicted redshift dependence of the BAO observables for various values of Ωm,0 and w and
compare with the corresponding BAO data compilation that is illustrated in Appendix D.

Using the theoretically predicted redshift dependence of the BAO observables we construct
the deviations (3.2) and (3.3) for various values of w and Ωm,0 respectively. In Fig. 3.7 we show
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Figure 3.8: The variations (3.2) (left panel) and (3.3) (right panel) for O = DA ×
(
rfids /rs

)
as

a function of redshift z. We also include the BAO data DA(z) ×
(
rfids /rs

)
presented in Table

D.1 in the Appendix D. From Ref. [474].

0.5 1.0 1.5 2.0 2.5 3.0
-30

-20

-10

0

10

20

30

z

Δ
H
(z
)(
r
s
/r
s
fi
d )
[k
m
/s
ec
·M
pc
]

w=-0.5

w=-1.5

0.5 1.0 1.5 2.0 2.5 3.0
-30

-20

-10

0

10

20

30

z

Δ
H
(z
)(
r
s
/r
s
fi
d )
[k
m
/s
ec
·M
pc
]

Ωm,0=0.35

Ωm,0=0.25
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the deviations of the observable DV (z)× rfids
rs

for w ∈ [−1.5,−0.5] around w = −1 (left panel)
and for Ωm,0 ∈ [0.25, 0.35] around Ωm,0 = 0.3 (right panel). Notice the existence of a blind spot
for the parameter Ωm,0 at z ' 1.2, whereas the optimum redshift region is at z ' 0.62. On
the contrary, for the parameter w there is no blind redshift spot, while the optimum redshift

region is at z > 1.2. Similarly, for the observable DA × rfids
rs

we construct Fig. 3.8. As we can

see, a similar behavior with DV (z) × rfids
rs

is detected despite the fact that the blind spot for
the parameter Ωm,0 appears in a higher redshift (z ' 2). It is also interesting to note that
the redshift region z > 2 produces significantly reduced sensitivity for the parameter Ωm,0 in

comparison to the DV (z)× rfids
rs

observable.
In Fig. 3.9 we construct the theoretically predicted deviations (3.2) (left panel) and (3.3)

(right panel) for various values of w and Ωm,0 respectively for the BAO observable H(z)× rs
rfids

.

Obviously, the sensitivity increases monotically with redshifts for both the parameters w and
Ωm,0 and there are no blind redshift spots. Notice the asymmetry obtained for the equation
of state parameter which is due to the fact that for w < −1 at early times the effects of dark
energy are negligible for all values of w, leading to a degeneracy for this range of parameters

2Even though the redshift region z > 2 seems an area with better sensitivity for all the parameters, there
are currently almost no BAO data available in this redshift range.
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Figure 3.10: The variations (3.2) (left panel) and (3.3) (right panel) for the observable O = H
as a function of redshift z, superimposed with the full compilation of cosmic chronometer data
presented in Table D.2 in the Appendix D. From Ref. [474].

at high z. However, the Hubble rate H(z) is also directly probed by the cosmic chronometer
data for specific redshift values. The cosmic chronometer data approach is based on the simple
fact that the definition of the Hubble paramet itself can be expressed as

H(a) ≡ ȧ

a
⇒ H(z) = − 1

1 + z

dz

dt
. (3.19)

A basic advantage of these kind of data is that, in contrast to BAO or SnIa (that we will discuss
shortly), there is no dependence on a complex integration. Nevertheless, the calculation of the
ratio dz/dt is a rather complicated task (see Refs. [43, 487, 488] for more details). So it would
be interesting to use the cosmic chronometer data instead of the H(z) × rs

rfids
BAO data to

see if the results coincide. In Fig. 3.10 we show the deviation of the Hubble expansion rate
H(z) for various values of w (left panel) and Ωm,0 (right panel), superimposed with the cosmic
chronometer data presented in Table D.2 in Appendix D. Comparing Figs. 3.9 with 3.10 it
is clear that despite the similarity of the two figures, the BAO data are significantly more
constraining compared to the cosmic chronometer data for both w and Ωm,0, especially at low
redshfits.

3.2.2 Contour Shapes and Redshift Ranges

It is only natural to expect that the presence of blind redshift spots and optimum redshift
regions for specific cosmological parameters also affect the forms of the corresponding confidence
contours, since the Figure of Merit, i.e. the mutual area of the confidence contours in parametric
space, increases (decreases) for compilations close to the optimum redshift region (blind redhsift
spot). Therefore, in order to demonstrate this effect, we need to construct the confidence
contours for the parameters w and Ωm,0 using the BAO observables described in the previous
subsection at different redshift regions.

For the construction of the confidence contours we apply the maximum likelihood as de-
scribed in Chapter 2. More specifically, for the BAO data we construct a relevant χ2 function
that is then minimized. The corresponding vector V i

BAO(zi,Ωm,0, w) is written as

V i
BAO(zi,Ωm,0, w) ≡ BAOm

i −BAOm
theoretical , (3.20)
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where the integer m takes one of the values m ∈ [1, 3] representing the different BAO data
of Table D.1 presented in Appendix D, while the theoretical expressions correspond to the
formulas of the previous subsection. Therefore, the relevant χ2 functions [similar to Eq. (2.18)]
are given as

χ2(Ωm,0, w) = V i
BAOC

−1
ij V

j
BAO . (3.21)

Regarding the forms of the covariance matrices Cij, for the parameter DV (z)× rfids
rs

we have

CBAO,total

ij,DV ×(rfid.s /rs)
=

 σ2
1 0 0 · · ·

0 CWiggleZ
ij 0 · · ·

0 0 · · · σ2
N

 , (3.22)

where N = 28 and the submatrix of the WiggleZ survey is [489]

CWiggleZ
ij = 104

 2.18 −1.12 0.47
−1.12 1.71 −0.72
0.47 −0.72 1.65

−1

. (3.23)

For the DA × rfids
rs

and H × rs
rfids

we consider a diagonal form

CBAO,total
ij =

 σ2
1 0 0 · · ·

0 σ2
2 0 · · ·

0 0 · · · σ2
N

 , (3.24)

where in this case N corresponds to the relevant number of BAO datapoints. Of course, the
forms of the considered covariance matrices (3.23) and (3.24) are an overestimation as they
ignore possible correlations between the relevant BAO data, but to the best of our knowledge,

the non-diagonal terms for both the DA× rfids
rs

and H× rs
rfids

observables are not publicly available.

For the estimation of this effect, we follow the same procedure of the previous Chapter
performing Monte Carlo simulations including random non-diagonal terms to the covariance

matrices for the DA × rfids
rs

and H × rs
rfids

observables of magnitude similar to the non-diagonal

terms of the non-diagonal terms corresponding to DV × rfids
rs

. Thus we set the magnitude of the
matrix to be [70]

Cij =
1

2
σi · σj , (3.25)

where σi corresponds to the errors of the i published datapoints and σj corresponds to the
errors of the j published datapoints. The simulations suggest that including the non-diagonal
terms the best fit parameters do not change more than 10%. Hence we anticipate a possible
reasonable correlation among datapoints to not significantly alter the results of our analysis.

Minimizing Eq. (3.21) we derive the best fit values of the parameters and construct the
relevant 1σ − 3σ confidence contours in the parametric space (Ωm,0 − w). In the left panel of
Fig. 3.11, we show the corresponding contours for the full DV × rfid.s /rs compilation presented
in Table D.1 in the Appendix D. The best fit parameters of the BAO data (green point) are
differ approximately 1σ from the corresponding Planck15/ΛCDM best fit values (red point).
Moreover, we split the data into two distinct compilations. In the first one we include the
BAO with z < 0.55 (14 datapoints) that we denote as low redshift DV × rfid.s /rs data, while
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Figure 3.11: The 1σ − 3σ confidence contours in the parametric space (Ωm,0 − w) for the full
BAO DV × rfid.s /rs compilation (left panel), the low redshift data (middle panel) and the high
redshift data (right panel). The red dot corresponds to the Planck15/ΛCDM best fit, while the
green dot to the corresponding BAO best fit. From Ref. [474].

in the second one we incorporate the BAO with z > 0.55 (14 datapoints) that we denote as
high redshift DV × rfid.s /rs data. Using these two compilations we construct the corresponding
1σ − 3σ confidence contours for the low z (middle panel) and the high z data (right panel).
As expected, the low redshift data that correspond to the optimum redshift region make the
confidence contour thinner in the Ωm,0 axis and longer in the w axis. On the contrary, the high
redshift data that are close to the to the blind spot, make the contours thicker in the Ωm,0 axis
and shorter in the w axis. Similar confidence contours can also be constructed for the low and
high redshift data of the DA × rfids

rs
and H × rs

rfids
observables, deriving akin results.

3.3 Distance Modulus from SnIa and from Gravitational

Waves

A prominent example among the geometrical probes that is extensively considered in the
literature is the luminosity distance (1.44). The luminosity distance dL is measured using astro-
physical objects known as standard candles. As a standard candle we define an astrophysical
object with an absolute luminosity that is unrelated to the distance. Characteristic examples
of standard candles are the SnIa or the standard gravitational wave sirens.

In general, supernovae are very powerful and bright stellar explosions that release a tremen-
dous amount of energy. Supernovae can be categorised depending on their light curves and
their absorption line of different chemical elements in their spectrum [450]. In particular, if the
observed spectrum contains spectral lines of hydrogen, it is identified as Type II, otherwise is
identified as Type I. Furthermore, if a single ionized silicon at 615nm appears in the spectrum,
then the supernovae is further classified as Type Ia. The basic mechanism for the appearance
of SnIa includes a binary system of stars in which one of them is a white dwarf. When the
other one (companion star) reaches its red giant phase, the white dwarf collects material from
the companion star due to gravity creating the very well known accretion disc. At a certain
point the white dwarf will reach a critical mass that is known as the Chandrasekhar mass
mch ' 1.4M� where the symbol M� corresponds to the solar mass [490]. As the white dwarf
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Figure 3.12: The variations (3.1)-(3.3) for O = µ as a function of redshift for various values
of the parameters ga, w and Ωm,0, superimposed with the binned JLA data of Table D.3 in the
Appendix D. From Ref. [474].

is progressively compressed the temperature rises leading to the carbon fusion, triggering a
“cataclysmic” outburst (see Ref. [94] for more details). The standard gravitational wave sirens
provide an independent way to measure the luminosity distance as long as the detected grav-
itational wave, that can be created by a binary neutron star merger, has an electromagnetic
counterpart (this is what we call as standard siren) [491–494].

In the context of a wCDM model, the luminosity distance dL(z) of a SnIa is given as

dL(z) =
c

1 + z

∫ z

0

dz′

H0

√
Ωm,0(1 + z′)3 + (1− Ωm,0) (1 + z′)3(1+w)

, (3.26)

where we have used (1.69) setting Ωr,0 = 0. Based on Eq. (3.26) it is straightforward to
construct the distance modulus µ(z) that is defined as the difference between the apparent
magnitude mth(z) and the absolute magnitude M and is connected with the luminosity distance
through

µ(z) ≡ mth(z)−M = 5 log10[dL(z)] + 25 . (3.27)

For an evolving Newton’s constant Geff(z), such as the form of (2.10), the absolute magnitude
of SnIa varies as [455,456,495]

M −M0 =
15

4
log10

(
Geff

GN

)
, (3.28)

with M0 corresponds to the reference local value of the absolute magnitude (see also the follow-
ing Chapter for an extensive discussion regarding the ratio 15/4 that appears in this equation).
Therefore, the distance modulus of SnIa also depends on the evolving Newton’s constant Geff(z)
via

µ(z) = 5 log10[dL(z)] +
15

4
log10

(
Geff

GN

)
+ 25 . (3.29)

Similarly, in the case of the gravitational wave luminosity distance the relevant gravitational
wave distance modulus is of the following form [496]

µgw(z) = 5 log10

[
dL(z)

√
Geff

GN

]
+ 25 . (3.30)

In Fig. 3.12 we construct the theoretically predicted deviations (3.1) (left panel), (3.2)
(middle panel) and (3.3) for various values of the parameters ga, w and Ωm,0 for the distance
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Figure 3.13: The sensitivity measure (3.8) for µgw for the parameters ga, w and Ωm,0. From
Ref. [474].

modulus (3.29). We also show the binned Joint Light-curve Analysis (JLA) SnIa data [40]
presented in Table D.3 in the Appendix D. Furthermore, in Fig. 3.13 we construct the sensitivity
measure of the gravitational wave distance modulus µgw, using (3.8) for the parameters ga (left
panel), w (middle panel) and Ωm,0 (right panel). Notice that even though the deviation ∆µgw
appears to be increasing with redshift for all the parameters considered, the absolute value of
the sensitivity measure with respect to the parameter ga has a maximum for redshifts in the
range z ∈ [4, 5], indicating the presence of an optimal redshift range. For the parameters w
and Ωm,0 Eqs. (3.29) and (3.30) are equal so, in Fig. 3.14 we only show the deviation ∆µgw(z)
for the parameter ga superimposed with the single available datapoint [326]. As we can see the
standard sirens need drastic improvement in order to identify the blind spots and the optimum
redshift range and to constrain Geff in general.
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Figure 3.14: The variations (3.1) for O = µgw as a function of redshift for various values of the
parameter ga, superimposed with the single available datapoint. From Ref. [474].

3.4 In Brief

In this Chapter we have determined the blind spots and optimum redhsift regions of basic
cosmological observables with respect to the matter density parameter Ωm,0, the equation of
state parameter w assumed constant and ga, a phenomelogical parameter of a modified gravity
parametrization for Geff [Eq. (2.10)]. In particular, we have considered the growth rate of
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Optimal Ranges

matter density perturbations expressed through fσ8(z) and f(z), the distance modulus µ(z)
from SnIa, the gravitational wave distance modulus µgw(z) as well as BAO observables expressed
through DV ×

(
rfids /rs

)
, DA×

(
rfids /rs

)
and H(z)×

(
rs/r

fid
s

)
and showed that in many cases the

constraining power does not vary monotonically with redshift. Furthermore, we have introduced
a new statistic which we called “sensitivity” [Eq. (3.8)] that includes the effective survey volume
Veff as a measure of the constraining power for each observable.

The results of our analysis revealed that many of the recent growth data surveys that tend
to increase the redshift of the measurement actually approach the blind spot of fσ8(z) for all
three cosmological parameters in consistency with the result of the previous Chapter. A similar
trend was also identified for the DA×

(
rfids /rs

)
observable with respect to Ωm,0. Concluding, a

strategy that may prove more helpful in the design of future surveys is that they should improve
the measurements at lower redhsift (close to the optimum redshift region for each observable)
instead of focusing on higher redhsifts.
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Chapter 4
Hints of a Local Matter Underdensity or
Modified Gravity in the Low z Pantheon data

As we discussed in Chapter 2, a possible decrease of the effective Newton’s constant at low
redshifts z would leave a characteristic signature in SnIa data [73,455–458,497]. In particular,
if the effective Newton’s constant is indeed a decreasing function at low z, then this would lead
to an evolving Chandrasekhar mass mch and therefore to the detection of lower values for the
absolute magnitude M at recent cosmological times with respect to the best fit value of M in
the context of ΛCDM. As a result, such an evolution of M , conveys to lowM values at low z,
since M is given as [285,497]

M≡M + 5 log10

(
c/H0

1Mpc

)
+ 25 = M − 5 log10(h) + 42.38 , (4.1)

where we recall that h ≡ H0/100 km s−1 Mpc−1. However, as we can clearly see from Eq.
(4.1), ifM is indeed evolving, then this evolution could also be produced by higher local values
of H0 in the context of e.g. a local matter underdensity scenario. The scenario that we live
in a local underdence region that fades away at large scales is not new and can in principle
explain the H0 tension. In fact, it has been proposed as an alternative theory to explain the
accelerated expansion of the Universe without the presence of a cosmological constant [260–267].
However, in order to explain simultaneously the accelerated expansion of the Universe and
the H0 problem the Gpc scale and depth of the underdensity region required is inconsistent
with current observations [268–275]. Nevertheless, there are some works in the literature that
study different survey galaxies arguing that a local underdensity should not be completely
omitted [276–286].

SnIa have been widely used as standard candles to probe the expansion rate H(z) of the
late Universe, i.e. for z < 2. The theoretically predicted apparent magnitude mth(z) of the
SnIa can also be expressed as [148,287,340]

mth(z) = M + 5 log10 [DL(z)] + 5 log10

(
c/H0

1Mpc

)
+ 25 =M+ 5 log10 [DL(z)] . (4.2)

Here DL(z) is the Hubble free luminosity distance that is connected with the luminosity distance
dL [calculated by Eq. (1.44)] through

DL(z) = H0
dL(z)

c
. (4.3)
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Usually, when the parameters of the studied H(z) are pinpointed, the degenerate parameters
M , H0 (or equivalentlyM) are marginalized as nuisance parameters [40,41,498]. For instance,
in the context of the standard ΛCDM, where the expansion rate is given as

H2(z) = H2
0

[
Ωm,0(1 + z)3 + (1− Ωm,0)

]
. (4.4)

Eq. (4.2) is used for the construction of a marginalized χ̃2 function of the form

χ̃2(Ωm,0) ≡ −2 ln

[∫
dM exp

(
−χ

2(M,Ωm,0)

2

)]
, (4.5)

which is then minimized. Such a procedure however can lead to valuable physical information
loss connected to possible M and/or H0 variations. So, in the analysis of this Chapter we
choose to keep the degenerate parameter M and perform a tomographic analysis in the latest
publicly available SnIa data, i.e. the Pantheon dataset [41], systematically searching for any
redshift dependence of the parameter M.

4.1 Searching for a redshift dependence of M
For the search of any possible redshift dependence of the parameterM, we use the Pantheon

dataset [41]. This dataset is the largest publicly available compilation today, consisting of six
independent probes that cover the redshift range 0.01 < z < 2.3, giving a total of 1048 SnIa.
The corresponding data, that can be found in this github repository, report the name of each
SnIa, the CMB and heliocentric redshifts, the observed colour and stretch corrected apparent
magnitudes mobs with its corresponding error σmobs . In the context of a maximum likelihood
analysis, we need to construct a χ2 function [similar to Eqs. (2.18) and (3.21)] for the Pantheon
dataset, using Eq. (4.2) as a function of the parameters M and Ωm,0. The χ2 function for the
Pantheon dataset is written as [285,497]

χ2(M,Ωm,0) = V i
Panth.C

−1
ij V j

Panth. , (4.6)

where V i
Panth. ≡ mobs(zi)−mth(z) and Cij is the total covariance matrix [41].

The total covariance matrix Cij is constructed as the sum of a diagonal covariance matrix
of the statistical uncertainties which we call D̄ij and a non-diagonal matrix associated with
the systematic uncertainties that emerges from the bias correction method. The non-diagonal
matrix is called C̄sys (see Ref. [41] for more details). The corresponding files for each ma-
trix in the github repository are the lcparam full long zhel.txt1 and sys full long.txt

respectively. In this section (as well as in the following two) we consider only the statistical
uncertainties. This procedure makes the analysis much simpler due to the diagonal nature of
the covariance matrix D̄ij but leads to somewhat lower uncertainties of the derived best fit
parameters. In Section 4.4 however, we will include the systematic uncertainties and repeat the
analysis of searching for a possible redshift dependence ofM in order to estimate the statistical
significance of the observed effects discussed below.

Applying the maximum likelihood method while fixing a ΛCDM background, we minimize
the χ2 function (4.6) to find the parameters best fit values for the full dataset to be Ωm,0 =

1Approximately eight months after the official Pantheon data release the authors did an update in the
heliocentric redshifts of the SnIa including this file in the github repository. The heliocentric redshifts provide
a slight correction to the form of the luminosity distance that emerges due to peculiar motions [499].
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0.285 ± 0.012 and M = 23.803 ± 0.007 in consistency with previous studies [41, 500]. If M is
redshift independent, we anticipate that any subset of the Pantheon dataset should give a best
fit value consistent (within the 1σ threshold) with the corresponding best fit values of the full
dataset. In order to test this hypothesis, at first, we fix Ωm,0 to its best fit value of the full
dataset and consider cumulative subsets of the full data compilation. The first subsets’ redshift
range corresponds to z ∈ [0.02, 0.03] while for the construction of the rest of the subsets we keep
the lower value zmin = 0.02 fixed and increase the maximum value zmax (cutoff) of the redshift
range in steps of ∆zmax = 0.01 in order to have large enough subsamples for an acceptable
statistics of the results. The first subsample is obviously the smaller one and includes only 46
datapoints. For each subsample, we apply the maximum likelihood method and find the best
fitM values along with their corresponding 1σ errors as illustrated in the left panel of Fig. 4.1.
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Figure 4.1: The evolution of the best fit values (blue dots) ofM (left panel), M (middle panel)
and h (right panel) along with their 1σ error for various cutoff values of zmax. The dashed lines
correspond to the best fit values indicated by the full dataset. From Ref. [285].

We repeat this procedure to calculate the best fit values of M for the same SnIa subsamples
(middle panel of Fig. 4.1) using the definition (4.1) and fixing h = 0.74 [501]. Similarly, we
calculate the best fit values of h for the same SnIa subsamples (right panel of Fig. 4.1) fixing
M = −19.23 (a value indicated by the best fit value ofM for the full dataset). Clearly, at low
reshifts and in particular in the resdhift range zmax ∈ [0.02, 0.15] the data seem to prefer lower
values ofM from the best fit value indicated by the full dataset (continuous dashed line). This
difference is at a level of about 2σ and drops drastically for zmax > 0.15 leading to values of
M for each subsample consistent (well within the 1σ threshold) with the relevant best fit value
indicated by the full dataset. The observed difference in the resdhift range zmax ∈ [0.02, 0.15],
corresponds to lower values of M (middle panel of Fig. 4.1) or equivalently higher values of h
(right panel of Fig. 4.1) in the same redshift range.

A similar behavior is detected if instead of considering cumulative bins, we rank the Pan-
theon data from lower to higher redshifts. Initially, we consider the lowest redshift subsample
consisting of 100 datapoints and find its best fit value of M along with the corresponding 1σ
error assuming a ΛCDM background, as well as the mean value of the 100 point subsample
zmean. Then, after shifting the 100 point subsample by one datapoint towards a higher redshift,
we construct the next point and continue until we cover the entire Pantheon dataset. The
results of the procedure are illustrated in the left panel of the following Fig. 4.2. Similarly to
Fig. 4.1, the middle/right panel of Fig. 4.2 corresponds to the best value of M/h instead of
M. We observe that for zmean < 0.3 the best fit value ofM oscillates around the best fit value
of the full dataset at a level of about 1σ− 2σ implying a similar behavior for M (middle panel)
and h (right panel) in the same redshift range. The redshift range of the oscillation in this case
is larger than the detected redshift range of the variation in Fig. 4.1 since as the cutoff redshift
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Figure 4.2: The evolution of the best fit values (blue dots) ofM (left panel), M (middle panel)
and h (right panel) along with their 1σ error for 100 point subsamples as a function of the
mean redshift zmean. The dashed lines correspond to the best fit values indicated by the full
dataset. From Ref. [285].

increases, so does the size of the corresponding subsample canceling as a result the oscillating
effect.

Furthermore, in order to increase the low z subsample and improve the statistics, we sort
once more the Pantheon data from lowest to highest redshifts and split the entire dataset in foul
equal bins containing 262 uncorrelated datapoints. Applying the maximum likelihood method
in each bin separately in the context of a ΛCDM background and minimizing Eq. (4.6) we
obtain the best fit values of Ωm,0 and M and their corresponding 1σ error for each bin as it is
shown in Fig. 4.3.
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Figure 4.3: The best fit values of M (left panel) and Ωm,0 (right panel) with the 1σ errors for
the four uncorrelated bins. The horizontal axis corresponds to the redshift range of each bin.
The continuous dashed line describes the best fit value of the full dataset while the dot dashed
lines the 1σ error region. From Ref. [285].

An oscillating behavior such as the one observed in Fig. 4.2 is evident at low redshifts z.
Moreover, we notice that the best fit values ofM and Ωm,0 for the lowest z bin (0.01 < z < 0.13)
are more than 2σ lower than the corresponding best fit values of the full dataset, in consistency
with Figs. 4.1 and 4.2. This trend is also apparent in Fig. 4.4 where we plot the 1σ − 3σ
confidence contours of the four uncorrelated redshift bins in the parametric space (Ωm,0 −M).

The probability that such low values ofM and Ωm,0 can occur in the context of the standard
ΛCDM model can be estimated utilizing Monte Carlo simulations of Pantheon like datasets
assuming a ΛCDM background. Specifically, we construct 500 simulated Pantheon datasets
with redshifts 0.01 < z < 0.13, i.e. the corresponding redshifts of the first bin, and replace
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uncorrelated redshift bins. The blue confidence contours correspond to the 1σ−3σ full Pantheon
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dot represents the best fit value indicated by the full Pantheon dataset. From Ref. [285].
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Figure 4.5: The distributions of Ωm,0 (left panel) and M (right panel) using 500 Monte Carlo
simulations of Pantheon like datasets under the assumption of an underlying ΛCDM model, in
the redshift region of the first bin (0.01 < z < 0.13). The red dashed lines correspond to the
best fit values of the first bin indicated by the real data. From Ref. [285].

the relevant apparent magnitude of the real data [mobs(zi)] with simulated datapoints msim(zi)
created under a random normal (gaussian) distribution with a mean value obtained from the
best fit ΛCDM value of the apparent magnitude mth. As the standard deviation of the gaussian
distribution we select the σmobs of each datapoint respectively [502]. After constructing the 500
Monte Carlo simulation, we apply the maximum likelihood method and see how many of the
simulated data give lower values for M and Ωm,0 than the best fit values indicated by the real
data of the first bin. The results of this procedure that are demonstrated in Fig. 4.5, show
that less than 1% (0.2% for either Ωm,0 orM) of the Monte Carlo simulations give smaller best
fit values for M or Ωm,0 than the actual best fit values of the first bin. Therefore, we confirm
that the reduced value ofM is a rather unlikely event in the context of an underlying physical
ΛCDM model.

The 2σ − 3σ detected signal regarding both the Ωm,0 and M has also been identified by
previous studies [283, 503]. This variation of M at low redshifts can be attributed to the
following:

• A local underdensity, i.e. a “Local Void” that vanishes at large scales. As we showed in
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Figs. 4.1 and 4.2 a lower M than the best fit value indicated by the full dataset in the
low redshift regime, leads to a higher value of h [see Eq. (4.1)] than the indicated best
fit value of the full dataset in the same redshift region. A generic way to explain this
larger h value, would be if our local Universe is more underdense compared to the mean
density of the Universe affecting as a result the measured h value. In the context of a
“Local Void” model, the value of h increases by 2 − 3% (see Fig. 4.2 - right panel) and
such a scenario would also predict an anisotropy for the best fit value of M in the sky.
This case is studied in the following Section 4.2.

• A modified theory of gravity. Another possible explanation for the M variation at low
z is a redshift depence of the absolute magnitude M , due to e.g. a time variation of
Newton’s constant in the context of a modified theory scenario. This case will be studied
in Section 4.3.

• Statistical and/or systematic fluctuations of the data around the true ΛCDM model. The
probability of this case can be estimated creating a large number of simulated Pantheon
like datasets in the context of a ΛCDM background (as we did previously) with a multi-
variate gaussian distribution that takes into account the full covariance matrix Cij instead
of just the statistical uncertainties. This probability (that is less than 1%) is expected to
increase in the context of the full covariance matrix and if the “look elsewhere effect” is
taken into account. This case is extensively discussed in Section 4.4.

4.2 Local Matter Underdensity Scenario

If the scenario that we live in an underdense region is realized in Nature, then the locally
measured value of H0 would be larger than the true global value of H0, leading to a lower value
of M at local scales, justifying the results of the previous section. If the observer is located
exactly (or really close) at the center of the underdense region, then no evidence of anisotropy
would be detected. However, a slightly off-center observer of the underdense region would
experience a preferred cosmological direction and an overall anisotropy that could be detected
in the context of the Pantheon dataset. Hence, in what follows, we use two different methods
that are widely used in the literature in order to search for possible anisotropies. These are the
Hemisphere Comparison [285,502,504–507] and the Dipole Fit [285,506–509] methods.

4.2.1 Hemisphere Comparison Method

The Hemisphere Comparison (HC) method was first presented in Ref. [504] and applied
in the context of the Union2 dataset in Ref. [502]. The main steps of the HC method are
summarized below [502]:

• Initially, a random direction is considered that has the following form

r̂rndm =
(

cosφ
√

1− cos2 θ, sinφ
√

1− cos2 θ, cos θ
)
, (4.7)

where φ ∈ [0, 2π] and cos θ ∈ [−1, 1]. These variables are randomly selected in these
intervals with a uniform probability distribution.
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• Two different hemispheres are considered that are called “up hemisphere” and “down
hemisphere”. The “up hemisphere” corresponds to the subset where r̂rndm · r̂data > 0,
whereas the “down hemisphere” corresponds to the subset r̂rndm · r̂data < 0. The unit
vector r̂data describes the direction of each SnIa in galactic coordinates.

• Identify the best fit value ofM in the up (down) hemisphereMup (Mdown) applying the
maximum likelihood method for the best fit value of Ωm,0 indicated by the full dataset.
Using these quantities, define the Anisotropy Level (AL) as [502]

∆M
M̄
≡ 2
Mup −Mdown

Mup +Mdown

(4.8)

and its corresponding 1σ error as [502]

σ∆M/M̄ =

√
σ2
Mup

+ σ2
Mdown

Mup +Mdown

. (4.9)

• Repeat this procedure for N random directions r̂rndm and find the maximum AL and the
related direction. The number of random directions needs to be well above the number
of datapoints in each hemisphere, so for the Pantheon data we set N = 3000.

Implementing the HC method in the Pantheon dataset, we construct the AL colour map
for M in Fig. 4.6.

Δℳ /ℳ

-0.0018 0.0018

Figure 4.6: The AL colour map constructed using HC method for 3000 random directions. The
red dots correspond to the pair of coordinates where the ratio ∆M/M̄ is maximum, while the
purple dots correspond to the pair of coordinates where ∆M/M̄ is minimum as it is indicated
by the relevant bar below the AL map. The black ellipses denote the 1σ error region of the
maximum and minimum AL. From Ref. [285].
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The magnitude of the maximum AL that is detected using the Pantheon data is(
∆M/M̄

)
max

= 0.0018± 0.0002 (4.10)

and the direction of the maximum anisotropy is (l, b) = (286.93◦ ± 18.52◦, 27.02◦ ± 6.50◦).
In order to check the consistency of the Pantheon SnIa with statistical isotropy, we compare

the extrema of the real data with the corresponding derived using simulated Pantheon like
datasets. For the simulated Pantheon data, we assume a statistical isotropy in the context of
a ΛCDM background keeping fixed the direction of each datapoint in the sky while randomly
selecting the Pantheon apparent magnitudes from a gaussian distribution with the best fit
ΛCDM mean and standard deviation equal to the corresponding Pantheon datapoint 1σ error.
We thus construct 30 isotropic simulated “Pantheon” datasets and for each dataset we use
3000 random directions to split it in two hemispheres and identify the corresponding extrema
of AL using ∆M/M̄. These 30 axes of extrema of AL are shown in Fig. 4.7 using galactic
coordinates and showing two opposite points for each maximum AL direction (left panel) along
with the corresponding real Pantheon data sky directions (right panel).

Figure 4.7: Left Panel: The 30 axes of extrema of AL constructed from the isotropic simulated
Pantheon datasets axes using 3000 random hemisphere directions in each dataset. Notice that
only two of the thirty maxima AL directions are in the upper left quadrisphere (southern hemi-
sphere in the longitude range of [0◦, 180◦]), inducing an artificial region of preferred directions in
the observed anisotropy in the lower left/upper right quadrisphere. The green dot corresponds
to the maximum anisotropy of the real data, while the blue (red) dots describe the simulated
datasets which have smaller (larger) magnitudes of ∆M/M̄ than the real data. Right Panel:
The distribution of the full Pantheon data in galactic coordinates. Notice that the data are not
uniformly distributed with strong preference of datapoint locations in the southern hemisphere
in the longitude range [0◦, 180◦] (lower left hemisphere). From Ref. [285].

The maximum AL of ∆M/M̄ magnitude of 16 (red dots in the left panel of Fig. 4.7) out of
the 30 simulated datasets was larger than the corresponding magnitude of the real Pantheon
data. This indicates that there is no statistically significant ∆M/M̄ AL in the Pantheon data.

It is important to note that from the 30 extrema AL directions, only two of them are in
the upper left quadrisphere, i.e. in the longitude range of [0◦, 180◦]. This is because as we can
clearly see from the right panel of Fig. 4.7 the Pantheon SnIa are not isotropically distributed in
the sky and the majority of them are concentrated in the southern left quadrisphere, while the
southern (lower) right quadrisphere is almost empty of SnIa. A possible solution to this problem
could be the smooth residual method that is discussed extensively in Refs. [375, 510–512] that
seem to be advantageous (on some occasions) when dealing with anisotropically distributed
data. This method attempts to ameliorate any anisotropy of the data using a 2D smoothing
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interpolation of the data on the surface of a unit sphere. An alternative approach to this
smoothing method is to construct a more isotropic subset of the full dataset, that will be
less biased in the selection of the maximum AL direction. Therefore, we randomly choose a
subsample containing 375 scattered more isotropically data in the four quadrispheres (100 in
the first three quadispheres and 75 in the down right quadrisphere) and construct a new reduced
dataset as it is shown in the right panel of Fig. 4.8. Utilizing this isotropic distributed dataset,
we generate 100 simulated Pantheon isotropic subsamples reducing the random direction to
15002. Then, we split it in two hemispheres and identify the corresponding maximum ∆M/M̄
AL magnitude. This is illustrated in the left panel of Fig. 4.8 where we show two opposite
points for each maximum AL direction. Clearly, the preferred range of directions vanishes for

Figure 4.8: Left Panel: The 100 axes of extrema of AL using 1500 random directions for each
isotropically distributed Pantheon subsample. The preferred direction disappears completely for
the more isotropic distributed subset. The green dot corresponds to the maximum anisotropy
of the real data, while the blue (red) dots describe the simulated datasets which have smaller
(larger) magnitudes of ∆M/M̄ than the real data. Right Panel: The distribution of the
reduced isotropic subset in galactic coordinates. From Ref. [285].

the case of the more isotropically distributed dataset. Even in this case however, no signal of
anisotropy is found since 33 (red dots in the left panel of Fig. 4.8) out of the 100 simulated
datasets have larger maximum AL magnitudes of ∆M/M̄ than the corresponding magnitude
of the real Pantheon data.

The lack of any anisotropy signal continues even when we split the Pantheon data in four
redshift uncorrelated bins. Using the same method as before, we construct for each bin 30
isotropic simulated Pantheon-like datasets and for each dataset, we use 1000 random direc-
tions and identify the corresponding maximum ∆M/M̄ magnitudes. Then, we compare the
maximum magnitudes ∆M/M̄ of the simulated Pantheon like datasets with the corresponding
maximum magnitude ∆M/M̄ of the real data for each bin. The results are summarized in the
following Table 4.1.
Interestingly, the strongest evidence for anisotropy are found in the highest bin with 0.42 <
z < 2.3 and not in the lowest bin. From the thirty simulated datasets only three have larger
∆M/M̄ magnitudes than the corresponding magnitude of the real data. Nevertheless, this
effect remains mild and not statistically significant since it remains below the 2σ threshold.

Although no evidence for anisotropy regarding ∆M/M̄ have been found in the Pantheon
data, the scenario that we live in a local underdensity can not be excluded yet especially if we
are located very close to the center of the undredensity. In order to quantify the local expansion

2The number of the random directions considered for the identification of the direction of the maximum AL
is smaller in this case, since the new dataset is significantly smaller than the original.
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Bin Redshift Range Number of Simulated Datasets with
∣∣∆M
M̄

∣∣
sim

>
∣∣∆M
M̄

∣∣
real

1st 0.01 < z < 0.13 21/30
2nd 0.13 < z < 0.25 8/30
3rd 0.25 < z < 0.42 14/30
4th 0.42 < z < 2.26 3/30

Table 4.1: The results of the HC method for each bin as described above.

rate δH0/H0 of the possible local underdensity, we need to quantify how much lower the M
value of the low z bin is with respect to the value indicated by the full dataset. Returning to
Fig. 4.3 we find the corresponing difference to be

∆M≡Mbf −Mbin1 ≈ 23.80− 23.76 ≈ 0.04± 0.02 , (4.11)

where Mbf corresponds to the best fit value of M indicated by the full dataset and Mbin1

corresponds to the relevant best fit value of the lowest z bin. Obviously, in the context of a
local matter underdensity scenario,Mbin1 corresponds to theM value that is measured inside
the local underdensity, while Mbf corresponds to the true global M value. The difference on
M leads to a variation of the local expansion rate δH0/H0 through [283](

δH0

H0

)
≈ 0.2 ln(10) ∆M = 0.019± 0.007 . (4.12)

From Eq. (4.12), we can also constrain the density contrast δρ0/ρ0 as well as the dimensionless
mater density contrast δΩ0/Ω0 in the context of a LTB model with a cosmological constant
assuming a top hat density profile for the void, using the following coupled system of equations
that are described in the appendix of Ref. [283]

δH0

H0

=
δρ0

ρ0

[
−0.171− 0.322 (Ωm,0 − 0.3) + 0.249 (Ωm,0 − 0.3)2

]
+

(
δρ0

ρ0

)2

[0.031+

+0.063 (Ωm,0 − 0.3)]− 0.022

(
δρ0

ρ0

)3

, (4.13)

δΩ0

Ω0

=
δρ0

ρ0

[
1.342 + 0.643 (Ωm,0 − 0.3)− 0.499 (Ωm,0 − 0.3)2

]
+

(
δρ0

ρ0

)2

[0.367+

+0.847 (Ωm,0 − 0.3)] + 0.056

(
δρ0

ρ0

)3

. (4.14)

Substituting Ωm,0 = 0.3153, i.e. the CMB value indicated by the Planck mission [18] and
δH0/H0 ≈ 0.02 as indicated by Eq. (4.12) in Eq. (4.13), we obtain δρ0/ρ0 = −0.10 ± 0.04.
Setting this value to (4.14) we calculate δΩ0/Ω0 = −0.12 ± 0.02, in consistency with previous
studies [283].

4.2.2 Dipole Fit Method

Another method that is extensively used in the literature to search for possible anisotropies
is the Dipole Fit (DF) method [285, 506–509]. In most physical mechanisms the predicted
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Quantity Best Fit Value ±1σ Error

c1 (−1.41± 3.76)× 10−4

c2 (−0.82± 4.54)× 10−4

c3 (5.28± 7.14)× 10−4

A (5.53± 6.04)× 10−4

B (−0.59± 3.01)× 10−4

l 210.254◦ ± 136.564◦

b 72.852◦ ± 60.631◦

Table 4.2: The best fit values with the 1σ error of the cis’, of the monopole and dipole terms
obtained using the DF method.

cosmological anisotropy can be described by a dipole proportional to cosθ. The DF method is
more sensitive to the detection of such an anisotropy, so we define the deviation of the apparent
magnitude from its best fit ΛCDM values m̄(z) as(

∆m(z)

m̄(z)

)
obs

≡ m̄(z)−m(z)

m̄(z)
. (4.15)

The main steps of the DF method are summarized below [508]:

• Transform the SnIa coordinates from equatorial to galactic, defining the unit vector n̂i as

n̂i = cos(bi) cos(li) x̂+ cos(bi) sin(li) ŷ + sin(bi) ẑ . (4.16)

• Define the dipole axis ~D in terms of the parameters c1, c2 and c3 in cartesian coordinates
as

~D = c1 x̂+ c2 ŷ + c3 ẑ . (4.17)

• The monopole+dipole angular distribution model for the apparent magnitude is given as

(∆m/m)th = A cos θ +B , (4.18)

where A and B describe the dipole and monopole terms of the anisotropy respectively
and θ is the angle between the datapoint direction of the SnIa with the vector ~D such as
that

n̂i ~D = A cos θi . (4.19)

• Fitting the Pantheon data to a dipole anisotropy model of the form of Eq. (4.18) and
applying the maximum likelihood method, we minimize the following χ2 function

χ2 = V iC−1
ij V j , (4.20)

where V i ≡ (∆m/m)obs − (∆m/m)th = [m̄(zi)−m(zi)] /m̄(zi) − A cos θi − B and Cij
is the covariance matrix neglecting the systematic uncertainties. From the minimization
process the best fit values of the monopole and dipole terms are derived, using the fact

that A =
√∑3

j=1 c
2
j . We also calculate the corresponding 1σ errors using the covariance

matrix approach.
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Implementing the DF method in the Pantheon dataset, we derive the following results that
are presented in Table 4.2. Clearly, both the dipole and monopole terms are consistent with
zero at the 1σ level. For this particular best fit values of the parameters A and B the anisotropy
direction is (l, b) = (210.254◦ ± 136.564, 72.852◦ ± 60.631◦). Notice that the errors of the (l, b)
coordinates are quite large, covering almost the entire sky area in consistency with the results
of previous studies [500,507,513].

Similarly to what we did in the HC method, we check the consistency of the derived dipole
and monopole terms with statistical isotropy using isotropic simulated Pantheon datasets. In
particular, we construct 30 simulated Pantheon datasets as described in Subsection 4.2.1 and
identify the corresponding dipole anisotropy directions and the best fit values of the dipole and
monopole parameters as illustrated in Fig. 4.9.

Figure 4.9: The different maximum AL directions corresponding to the 30 random simulated
datasets. The green dot corresponds to dipole of the real data, while the blue (red) dots describe
the dipole direction of simulated datasets which have smaller (larger) magnitudes of A than
the real data. The 1σ errors of the (l, b) galactic coordinates are quite large covering almost
the entire sky area. From Ref. [285].

Obviously, no preferred direction is identified in the context of the DF method, since 19 (red
points in Fig. 4.9) of the 30 isotropic simulated Pantheon datasets have larger dipole magnitudes
than the real data. Hence, we conclude that no statistically significant anisotropy is found using
the DF method, in agreement with the corresponding result of the HC method.

4.2.3 Comparison of the Hemisphere Comparison and Dipole Fit
Methods

From the implementation of the two methods, the following useful conclusions can be ex-
tracted:

• The HC method can identify more general anisotropies, since the DF is sensitive to an
anisotropy that has a dipole form such as the one in Eq. (4.18).
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• The obtained 1σ errors of the DF method are quite large and include almost the entire
sky area. This indicates that a dipole anisotropy seems to be significantly disfavored
by the Pantheon data. On the contrary, the HC method that is tuned to identify much
broader range of signals gives significantly smaller 1σ errors. Therefore, the HC method
seems to be more appropriate in order to identify any anisotropy signals hidden in the
Pantheon data.

To summarize, no evidence of anisotropy have been identified in the Pantheon data in agreement
with previous studies [500,507,513–516]. This lack of anisotropy does not favor (but also does
not exclude) the local underdensity scenario as a possible explanation of the observed reduced
value of M at low z indicated in the previous Section 4.1.

4.3 Modified Theory of Gravity Scenario

If the scenario of a modified gravity theory is realized in Nature, then a possible explana-
tion for the abnormal variation of M at low z can be explained in the context of a redshift
dependence of the absolute magnitude M . This evolution of M could be used as a probe of the
evolution of fundamental constants like the evolving Newton’s constant Geff . Previous stud-
ies [455,495] assume the absolute luminosity L is proportional to the amount of 56Ni produced
in a SnIa which in turn is a fixed fraction of the Chandrasekhar mass mch that depends on Geff ,
i.e. L obeys the following equation

L ∼MNi ∼ mch ∼ G
−3/2
eff . (4.21)

This equation, implies that as L increases Geff decreases. However, a recent study [457] using a
semi-analytical model to obtain SnIa light curves in the context of modified gravity, indicates
that as L increases Geff also increases. Specifically, in the used semi analytical model, extra
parameters such as the initial nickel mass in the ejecta, the initial radius of shock breakout,
the scale velocity, the effective opacity as well as total ejecta mass were included. Then, the
generated light curves were standardised by rescaling the shape to match a template width
and the numerical dependence of the standardised intrinsic absolute luminosity L on Geff was
identified leading to a positive power instead of the power −3/2. In any case, assuming a
general power law dependence of the form

L ∼ Gb
eff , (4.22)

any detected redshift dependence of the SnIa absolute luminosity (or equivalently of the SnIa
absolute magnitude) can be transformed into a redshift dependence of Geff for a fixed value of
b. For the general case of (4.22) the following simple power law relation between the absolute
magnitude M and Geff is obtained [285]

M −M0 = −5 b

2
log10

(
Geff

GN

)
, (4.23)

which for the standard value b = −3/2 reduces to Eq. (3.28). Substituting M in (4.2) the
theoretically predicted apparent magnitude is modified as

mth(z) =M+ 5 log10 [DL(z)]− 5 b

2
log10

(
Geff

GN

)
(4.24)
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Figure 4.10: The evolution of the ratio Geff/GN along with its 1σ error as a function of the
mean redshift zmean of each 100 datapoints subsample. In the context a modified theory, we
detect a 2− 3% deviation from the GR predicted value Geff/GN = 1 (dashed line) at a level of
approximately 2σ. From Ref. [285].

where M is given by Eq. (4.1) with M replaced by M0.

In order to identify any possible evolution of the ratio Geff/GN, we use Eq. (4.24) and the
100 point moving subsample method described in Section 4.1, fixing b to the standard value
b = −3/2. Following the method, we find the best fit value of M , setting M0 equal to the best fit
value of the absolute magnitude M indicated by the full dataset with h = 0.74. From the best
fit values of M , we identify the corresponding best fit values of the ratio Geff/GN, appointing
any redshift dependence of M into the ratio Geff/GN. The achieved best fit values for each
subsample superimposed with their 1σ errors are illustrated in Fig 4.10. Obviously, the same
oscillating behaviour observed for M at low redshift z that is shown in the middle panel of Fig.
4.2, is also evident for the ratio Geff/GN in the same low z region with Geff/GN(z = 0) < 1.

Next, we consider the parametrization (2.10) and substitute it to (4.24) in order to construct
a modified χ2 function. In this case, the modified χ2 depends not only on the same parameters as
before, i.e. (M,Ωm,0) but also on the extra parameters ga and b. Then we apply the maximum
likelihood method, by minimizing the modified χ2 function allowing the extra parameter b to
take various values in the range b ∈ [−2, 2] and interpolate the best fits of the extra parameter
ga as a function of b. This is illustrated in Fig. 4.11. For b < 0 we derive negative best fit
values for ga implying that the ratio Geff/GN < 1, in consistency with the results of the previous
Chapter.

Considering b = −3/2, i.e. the value considered by most previous studies [455, 495],
it is straightforward to construct the 1σ − 4σ confidence contours in the parametric space
(M,Ωm,0, ga). The best fit values obtained are M = 23.793± 0.009, Ωm,0 = 0.179± 0.078 and
ga = −0.47± 0.36. The 2D projections of the confidence contours are shown in Fig. 4.12 and
the results should be interpreted with care. The projections go through the best fit point in
the 3D parameter space. Notice that the GR point (ga = 0) appears to be more than 4σ away
from the best fit which corresponds to weaker gravity (ga < 0) in accordance with weak lensing
and growth cosmological data. However, this is a projection effect since in the context of the
full 3D parameter space we have ga = −0.47 ± 0.36, a value that is approximately 1.5σ away
from the GR predicted one.
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Figure 4.11: The parameter ga as a function of b. For b > 0 we obtain ga > 0, while for b < 0
we find ga < 0. From Ref. [285].
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Figure 4.12: The 1σ − 4σ confidence contours in the parametric space (M,Ωm,0, ga). The
projections go through the best fit point (green point) in the 3D parameter space. Notice
that the GR point corresponding to ga = 0 appears to be more than 4σ away from the best
fit which is a projection effect since in the context of the full 3D parameter space we have
ga = −0.47± 0.36. From Ref. [285].

4.4 Statistical Fluctuations Scenario

Another possible explanation for the observed variation of M at low redshifts z is the
existence of statistical fluctuations, since any realization of the data based on a given model
have its own specific characteristics that might look bizarre but in reality they appear due to
random fluctuations. Hence, the standard method that is followed in order to estimate if the
observed effect is real, is the comparison between real data with a large number of Monte Carlo
simulations. If the variation that we see in the real data appears simultaneously to the majority
of Monte Carlo simulations, then the variation is due to statistical fluctuations. A key part for
such an analysis is to consider the full covariance matrix which includes both the statistical
and systematic errors. Doing so, we find thatM = 23.81± 0.01 and Ωm,0 = 0.29± 0.02 for the
full dataset in agreement with the results of Ref. [41].

Next, following the same procedure as in Section 4.1, we sort the Pantheon compilation from
the lowest to the highest redshift and split the entire dataset in four equal uncorrelated bins
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consisting of 262 datapoints. Applying the maximum likelihood method in each bin separately
for the full covariance matrix in the context of a ΛCDM background, we obtain the best fit
values for Ωm,0 andM along with their corresponding 1σ errors and construct Fig. 4.13 (which
is similar to Fig. 4.3 including the systematic uncertainties in this case).
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Figure 4.13: The 1σ best fit values (blue dots) of M and Ωm,0 of the real data for each bin.
The dashed line corresponds to the best fit value of the full dataset, while the dot dashed line
to the 1σ error region. This plot is similar to Fig. 4.3 including the full covariance matrix and
not only the statistical uncertainties as in Fig. 4.3. From Ref. [497]. For the reproduction of
this figure visit the following dropbox link.

The exact results of the minimization process for each bin, considering the full covariance
matrix can be seen in Table 4.3.

Bin z Range M± 1σ error ∆σM Ωm,0 ± 1σ error ∆σΩm,0

1st 0.01 < z < 0.13 23.78± 0.03 1.14 0.07± 0.17 1.35
2nd 0.13 < z < 0.25 23.89± 0.06 1.48 0.56± 0.19 1.34
3rd 0.25 < z < 0.42 23.75± 0.06 0.99 0.18± 0.11 1.05
4th 0.42 < z < 2.26 23.85± 0.06 0.69 0.33± 0.06 0.50

Table 4.3: The best fit values with the 1σ error ofM and Ωm,0 for the four uncorrelated redshift
bins for the real data, using the full covariance matrix. Notice that for the first three redshift
bins the σ distance (∆σ) of the best fit from the full dataset best fit is at least 1σ and on the
average it is larger than 1.2σ.

Clearly, all first three bins of the real data best fits of M and Ωm,0 differ by at least 1σ from
the relevant full dataset best fits. It is important to note here that the number of bins is a
crucial parameter of the current analysis that could affect the results. Too many bins may lead
to overfitting of the data3 while a small number of bins may lead to loss of any hidden signals.
In our study, we choose four bins consisting of equal number of datapoints in consistency with
the previous subsections. Obviously this choice is not unique. For example, bins could have
been chosen so that each bin has the same redshift interval, while it is not appropriate for the

3See for example Fig. 5 of Ref. [458] where there is an abrupt decrease of the χ2 value when the number of
bins is five.
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present analysis since most of SnIa in Pantheon are concentrated in the lower part of their
redshift range, or have the same cumulative signal to noise (including downweighting from
systematics, which correlate points within the same bin).

In order to estimate the likelihood of such a σ deviation of best fit values in the first three
bins, we construct 1000 Monte Carlo simulations of Pantheon like datasets and split the random
data in four uncorrelated bins. For the construction of the simulated data, we consider random
apparent magnitudes m created assuming a multivariate normal distribution with a mean value
equal to the best fit ΛCDM value of the real data using the full covariance matrix of the real
data. The corresponding probability distribution is of the form [517]

fm (m1, . . . ,mk) =
exp

[
−1

2
(m− m̄)T C−1 (m− m̄)

]
√

(2π)k |C|
, (4.25)

where C is the full non-diagonal covariance matrix including both statistical and systematic
errors, |C| corresponds to the determinant of the full covariance matrix, m is the vector
{m1,m2, . . .mk} and m̄ corresponds to the mean value of the apparent magnitude vector.
Adopting (4.25), we generate the simulated datasets and find the percent fraction of them
where the first three redshfift bins have simultaneously best fit ΛCDM parameter values M
and Ωm,0 that differ from the real data best fit more than k σ ≡ σk σ times. The results for
the parameters M (σk = σkM) and Ωm,0 (σk = σkΩ) are illustrated in Fig. 4.14.
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Figure 4.14: Left Panel: Percent of simulated Pantheon dataset (including systematics) where
the first three out of four bins all differ simultaneously more than σkM σ from the best fit of
the full dataset. The red dotted line corresponds to the real data that differ more than 1σ
(1.14, 1.48 and 0.99σ for the first three bins respectively according to Table 4.3) from the full
dataset best fits. Right Panel: Same as the left panel but for the parameter Ωm,0 instead of
M. From Ref. [497]. For the reproduction of this figure visit the following dropbox link.

Clearly, the probability that all three first bins differ simultaneously more than 1σ from the
best fit of each simulated full dataset in the context of ΛCDM is less than 5%. This is an effect
approximately at the 2σ level. Actually, the probability is even smaller if we consider the exact
σ differences that are shown in Table 4.3 and calculate the fraction of the simulated datasets
with simultaneous σ differences larger that the exact corresponding σ differences of the real
data. In particular, the probability to have simultaneously 1.14σ difference (or larger) in the
first bin, 1.48σ difference (or larger) in the second bin and 0.99σ difference (or larger) in the
third bin forM, is 1.3±0.7%, while the relevant probability for Ωm,0 is 1.4±2%. However this
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result should be interpreted with care since the exact differences are based on the fine tuned σ
deviations of the real data bins from the full data best fits (1.14σ, 1.48σ and 0.99σ) and not
a generic feature as the 1σ choice. Therefore, this is an aposteriori statistic constructed after
looking at the data. Notice that a similar oscillating effect was also observed in Refs. [285,458]
even though its statistical significance was not quantified using simulated data.

Furthermore, it is interesting to check if this behavior is also evident for any three out of the
four bins. Constructing 1000 Monte Carlo realizations, we find that the probability that the
derived Ωm,0 in any three bins differ more than 1σ from the relevant Ωm,0 best fit to the whole
random dataset is 10.4± 2.2%, whereas the corresponding probability forM is 11.1± 2.4%, as
demonstrated in Fig. 4.15.
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Figure 4.15: Left Panel: Percent of simulated Pantheon dataset (including systematics) where
any three out of four bins all differ simultaneously more than σkM σ from the best fit of the full
dataset. Right Panel: Same as the left panel but for the parameter Ωm,0 instead of M. From
Ref. [497]. For the reproduction of this figure visit the following dropbox link.

Similarly to the previous results considering the first three bins the probabilities reduce if we
consider the exact σ difference of Table 4.3. In particular, the number of cases where the derived
Ωm,0 in any 3 bins is more than σrealΩm,0

away from the best fit Ωm,0 to the whole (random) data
sample is 7.5 ± 1.5%, while the relevant number of cases for M is 7.4 ± 1.5%. A summary of
the results can be seen in Table 4.4. These results indicate that the aforementioned oscillating
effect is much more prominent at low z . 0.5 where the dark energy density is more prominent
than in the fourth bin, which involves higher z. This fact favors the possibility that the effect
has a physical origin since a systematic effect would probably affect equally all four redshift
bins.

4.5 In Brief

In this Chapter we have performed a tomographic analysis of the latest publicly available
SnIa data (Pantheon) in the context of a ΛCDM scenario. In particular, we applied the max-
imum likelihood method and fitted at the same time the parameters Ωm,0 and the degenerate
parameterM, that is given by Eq. (4.1) as a combination of the absolute magnitude M and the
Hubble parameter H0. At first, we neglected the systematic uncertainties and found a 2σ− 3σ
tension between the best fit value ofM for SnIa with 0.01 < z < 0.2 and theM value derived
for the full Pantheon dataset. This tension at low redshifts can be interpreted either as a local
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Number of cases Probability

Ωm,0 in the first 3 bins > 1σ away from the best fit Ωm,0 to the full dataset 4.8± 2 %
M in the first 3 bins > 1σ away from the best fit M to the full dataset 4± 2.5 %
Ωm,0 in any 3 bins > 1σ away from the best fit Ωm,0 to the full dataset 10.4± 2.2 %
M in any 3 bins > 1σ away from the best fit M to the full dataset 11.1± 2.4 %

Ωm,0 in the first 3 bins > σreal away from the best fit Ωm,0 to the full dataset 1.4± 2 %
M in the first 3 bins > σreal away from the best fit M to the full dataset 1.3± 0.7 %
Ωm,0 in any 3 bins > σreal away from the best fit Ωm,0 to the full dataset 7.5± 1.5 %
M in any 3 bins > σreal away from the best fit M to the full dataset 7.4± 1.5 %

Table 4.4: Summary of the Monte Carlo deviations from the simulated and real data. The
obtained results considering the exact σreal differences should be treated with care, since this
decrease of the probabilities is not generic and it is based on a fine tuned σ value.

matter underdensity with δΩ0/Ω0 = −0.12± 0.02 or a modified theory scenario or this tension
can due to statistical fluctuations.

In the context of the local underdensity scenario, a lower value ofM leads to a higher value
of h than the one indicated by the full dataset at low z, according to Eq. (4.1). If this scenario is
truly realized in Nature, then we would naturally expect a signal of anisotropy in the parameter
M. Therefore, we utilized and compared two methods that search for such anisotropies: The
Hemisphere Comparison (HC) method and the Dipole Fit (DF) method. In spite of the absence
of any statistically significant anisotropic signal, a number of interesting conclusions have been
unveiled. Using simulated Pantheon like data that were generated assuming a ΛCDM model, we
showed that an anisotropy in the direction b ∈ [−15◦,−45◦], l ∈ [60◦, 150◦] (or in the opposite
direction b ∈ [15◦, 45◦], l ∈ [240◦, 330◦]) is favored generically by the data. This preference
disappeared when we constructed a more isotropically distributed subset of the Pantheon data
but this dataset less powerful in detecting overall anisotropy due to reduced number of SnIa.
Furthermore, we showed that the HC method seems to be more appropriate in detecting general
anisotropies in contrast to the DF method due to the sensitiveness of this particular method to
an anisotropy that has a dipole form. The absence of any statistical anisotropy does not favor
(but neither excludes) the local underdensity scenario as a possible explanation for the reduced
value of M at low z.

In the context of a modified gravity theory, a lower value of M leads to a lower value of
the absolute magnitude M in the low redshift regime which can be realized in the context of
a modified theory of gravity with an evolving Newton’s constant. In this scenario, using the
general form of Eq. (4.22), we found a 2σ deviation of ∼ 2 − 3% from the relevant ΛCDM
value for b = −3/2. Assuming the phenomenological parametrization (2.10) and applying the
maximum likelihood method, the best fit value of the extra parameter ga was derived to be
ga = −0.47 ± 0.36, i.e. approximately 1.5σ away from the relevant ΛCDM value (ga = 0),
favoring a reduced Newton’s constant compared to GR, in consistency with the finding of
Chapter 2.

Finally, we studied the possibility that the observed lower value of M is due to statistical
fluctuations of the data. In particular, if the observed effect is real, then the same behavior
should be present to a large number Monte Carlo simulations. So, including the systematic
uncertainties this time, we sorted the Pantheon data from the lowest to the highest bin, divided
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the entire dataset in four equal uncorrelated bins consisting of 262 datapoints and applied the
maximum likelihood method finding the same abnormal variation of M in the low redshift
regime in a somewhat lowered level. Then, we generated simulated Pantheon like data and
found that the percent of the simulated Pantheon dataset with a similar behavior is ' 5%,
i.e. approaching the 2σ threshold. Even though this statistical significant further increases if
instead of the first three bins we consider any three out of the four bins leaving the statistical
fluctuation scenario a viable explanation, we stress that the first three bins correspond to SnIa
with z < 0.42, i.e. where dark energy is dominant, hinting towards the existence of some
hidden physics beyond the standard ΛCDM concordance model.
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Chapter 5
Late-transition vs smooth H(z) deformation
models for the resolution of the Hubble crisis

One of the major observational problems that the standard ΛCDM model faces is the H0

tension. This tension is currently at a 5σ level and refers to the mismatch in the measurement
of the H0 as estimated by indirect measurements from the CMB, BAO and uncalibrated SnIa
using the inverse distance ladder method that report H0 = 67.36 ± 0.54 km s−1 Mpc−1 [18]
with the direct measurement from the Pantheon+ SnIa sample using the standard distance
ladder method that reports H0 = 73.04 ± 1.04 km s−1 Mpc−1 [518]1. Nevertheless, there are
more than one way to obtain the Hubble constant value and the majority of the early indirect
estimates agree with Planck data, while most of the late time measurements agree with SH0ES
even if different methods or geometric calibrators are used [317,318,519–521]. In particular, H0

measurements coming from a calibration of the Tip of the Red Giant Branch method (instead
of the usual Cepheid calibration one) on SnIa data [322,323], HII galaxy measurements [324] as
well as various low redshift data combinations [325] report a value that lies in the intermediate
area of these two (recall Fig. 1.7).

Motivated by the disagreement, a wide range of theoretical models have been proposed as
possible solutions [73,88,90–93] and can be categorized in three broad classes

• “Early Time” Solutions: These kind of models, recalibrate the scale of the sound horizon
at recombination by modifying physics during the pre-recombination era. In particular,
these models deform the Hubble expansion rate before recombination at z > 1200 includ-
ing additional components in the standard ΛCDM scenario increasing this way, the CMB
derived value of H0 [522–524]. These solutions include (but not limited to) early dark en-
ergy [217–223], extra neutrinos or relativistic species at recombination [212,224,525–530],
evaporating primordial black holes [228] etc. Even though these models have the poten-
tial to alleviate the Hubble tension they predict stronger growth of perturbations being
at odds with the reduced growth predicted by RSD and WL data, worsen as a result the
growth tension [531].

• “Late Time” Deformation Solutions: These kind of models preserve the H(z) consistent
with the observed CMB anisotropy spectrum at high z but increase H(z) at low z using a

1During the writing of the present thesis the data are not yet publicly available, so we focus on the Pantheon
compilation.
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late time smooth deformation, reaching the locally measured value of the Hubble constant
at z = 0. These solution include (but not limited to) running vacuum models [106–114],
interacting dark matter with dark energy models [204–211], exotic dark energy models
[229–243] etc. However, they can not fully resolve the Hubble problem, since they face
difficulties in fitting low z cosmological data (such as BAO and SnIa) [532] and tend to
predict a lower value of SnIa absolute magnitude M than the value implied by Cepheid
calibrators [533].

• “Late Time” Solutions with a Redshift Dependent SnIa Absolute Magnitude: This class
of models have been recently proposed as a possible solution to the Hubble tension [534–
536]. These models adopt an abrupt reduction of the SnIa absolute magnitude M by
∆M ' −0.2 mag at a transition redshift zt that can be caused by an abrupt change of
fundamental physics, such as a transition of the evolving Newton’s constant Geff . This
type of transition may be possibly coupled with a transition on the dark energy equation
of state wDE from the standard ΛCDM value wΛ = −1 at z > zt to a lower value at
z < zt. This class of models also have the potential to address the growth tension, since
they reduce the growth rate of cosmological perturbation due to a lower value of Geff at
z > zt [535] and have been challenged by different cosmological data [537,538].

Let us now be a little more thorough with the standard distance ladder methodology that
is used by the SH0ES team to obtain the H0 value. This methodology works by calibrating
the Cepheid variable stars applying parallax methods and then using the calculated distances
to “move further” towards galaxies that include mostly SnIa. Next, utilizing Eq. (4.2) in the
redshift range 0.023 < z < 0.15, the parameter M is measured under the assumption of a
constant M and the Hubble free luminosity distance DL(z) is Taylor expanded as [539]

DL(z) = z

[
1 +

1

2
(1− q0) z − 1

6
(1− q0 − 3 q2

0 + j0) z2 + . . .

]
, (5.1)

where q0 and j0 are the deceleration and jerk parameters [540] that are assumed to be q0 = −0.55
and j0 = 1, i.e. they are fixed to their corresponding ΛCDM values. As a result, the value of
H0 is inferred using an extrapolation method. This methodology however, is oblivious to any
possible transitions of M that could have happened at very low redshifts, i.e. for z < 0.023. If
for example, such a transition had occurred at zt = 0.01 (or lower), then the M that was derived
using the Cepheids for z up to ≈ 0.01 should not be considered to be the same for the nearby
SnIa. So, recent works argue that the designation “M tension/crisis” might be more suitable
to describe the problem [541,542]. Instead of focusing on the different H0 values published by
the Planck mission [18] and the SH0ES collaboration [518], these works propose to focus on the
different absolute magnitudes M values, which for the Planck mission is M = −19.401± 0.027
mag [543] while for the SH0ES collaboration corresponds to Mc = −19.244± 0.037 mag [544].

In this Chapter we focus on the third class of possible solutions, i.e. on late time M
transition models (LMT ) that possibly include a transition in the dark energy equation of
state parameter wDE (LwMT ) and estimate their best fit parameter values. Then, we consider
different H(z) deformation models and compare their quality of fit with the transition models
LMT and LwMT . Previous works using the CMB effective parameters as well as different
cosmological data indicated that transition models improve the quality of fit to cosmological
data [533–535]. In this Chapter, we implement a more complete and accurate approach using
the full Planck18 CMB data in the context of the Boltzmann code CLASS [463,464] and a Monte
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Figure 5.1: Left Panel: An example of how a transition in the equation of state wDE(z) looks.
Right Panel: An example of how the transition of the left panel can be achieved in the context of
a sharp transition in a quintessence (red line) or phantom (green line) potential (right panel),
with the scalar field running down/up the potential respectively. For this plot we assume
Ωm,0 = 0.3, zt = 0.2 and ∆w = ±0.05 for quintessence/phantom fields and reconstructed the
potentials following the procedure of Ref. [105]. From Ref. [536]

Carlo Markov Chain analysis using the MontePython code [545, 546]. Both of these numerical
packages are similar to the MGCAMB and MGCOSMOMC codes that we used in Chapter 2.

5.1 Fitting the Transition Models to Cosmological Data

The transition models that we will confront with up to date cosmological data are the
LMT and LwMT models. In particular, the LMT model involves an abrupt transition of the
absolute magnitude M of the following form [534,536]

M(z) = M< + ∆M Θ(z − zt) , (5.2)

where zt corresponds to the transition redshift, M< ≡ Mc = −19.24 mag is the Cepheid value
of the absolute magnitude as calibrated by the SH0ES teams reconstructed in Refs. [541,544],
∆M is the parameter that quantifies the shift from the Mc value and Θ corresponds to the
Heaviside step function. The LMT model is a special case of the LwMT model that has been
initially discussed in Ref. [534] and has a simultaneous transition on the same redshift zt of the
dark energy equation of state wDE of the form [534,536]

wDE(z) = −1 + ∆wΘ(zt − z) , (5.3)

where ∆w describes the shift from the ΛCDM value (wΛ = −1) for z < zt. Such transitions
in the equation of state wDE(z) can happen in the context of a minimally coupled scalar field
in GR, either of the quintessence or phantom type, as it is demonstrated in Fig. 5.1 where we
show how a transition of wDE in the left panel can be achieved by a quintessence (red line) or
phantom (green line) potential with the scalar field running down (up) the potential for the
quintessence (phantom) case. For Fig. 5.1 we reconstruct the potential using the procedure
of Ref. [105] setting Ωm,0 = 0.3, zt = 0.2 and ∆w = ±0.05 where the positive (negative)
sign corresponds to the quintessence (phantom) field. Obviously, altering the aforementioned
parameters the steepness as well as the transition redshift can be tuned.
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For the estimation of the best fit parameters of the transition models LMT and LwMT ,
we utilize the CLASS/MontePython numerical codes. Of course, the codes do not include the
transition models by default, so we need to modify them accordingly (see Appendix B for
more details regarding the performed modifications). In the context of the MCMC analysis
performed by the modified MontePython code, we consider the following datasets:

• The Planck18 CMB data and in particular, the TTTEEE likelihoods for high-l (l > 30),
the temperature data TT and EE power spectra data for low-l (2 < l < 30), as well as
the CMB lensing likelihood [18].

• The BAO data discussed in Refs. [45,547,548] as well as the Lyα BAO [549,550].

• The Pantheon SnIa compilation [41].

• A robust compilation of RSD data discussed in Ref. [71], using the likelihood presented
in Ref. [551].

The main advantage of the transition models, is that they provide a great amount of flexibility
in fitting the observational data, since they can closely reproduce ΛCDM for z > zt, while
being fully consistent with local measurements of the absolute magnitude M due to the extra
parameter ∆M . Therefore, if we set the transition at a rather low value, then we expect to
have a quality of fit similar to ΛCDM. Obviously, if the transition occurs at ultra low redshifts
where no data (from the selected datasets) are available, an even better quality of fit to that of
ΛCDM is expected due to the extra number of parameters of the transition models. In this case
however, there would be no H0 tension, since the local measurement of H0 should coincide with
the measurement of Planck if the M transition is taken into account. Hence, we impose the
prior ∆w ∈ [−0.7, 0.7] as well as zt ≥ 0.01 for the LwMT model that corresponds to at ≤ 0.99,
since any lower value of zt can not be probed due to the Hubble flow. The best fit values of the
LwMT model with zt ≥ 0.01 are shown in Table 5.1, while the 1σ − 2σ confidence contours
are shown in Fig. 5.2.

Parameter best-fit mean±σ 95.5% lower 95.5% upper

Ωm,0 0.3018 0.3066+0.0064
−0.0065 0.2939 0.3196

ns 0.9708 0.9685+0.0038
−0.0037 0.9608 0.9759

H0 68.56 68.03+0.55
−0.58 66.94 69.15

σ8 0.8141 0.8089± 0.0065 0.7957 0.8219
∆M −0.1676 −0.1698± 0.012 −0.1933 −0.1467
∆w unconstrained unconstrained unconstrained unconstrained
at 0.9856 > 0.985 > 0.984 > 0.984

M> ≡Mc + ∆M −19.408 −19.410± 0.012 −19.433 −19.387

− lnLmin 1917.02
χ2

min 3834

Table 5.1: The best fit values and the 1σ−2σ constraints of the parameters for the LwMT model
with zt ≥ 0.01 (or equivalently at ≤ 0.99) using the CMB+BAO+Pantheon+RSD likelihoods
described above.

92



5.1. Fitting the Transition Models to Cosmological Data

-0.64

-0.32

0

0.32

0.64

∆
w

0.983

0.985

0.986

0.988

0.99

a
t

-0.21

-0.19

-0.17

-0.15

-0.13

∆
M

0.285

0.295

0.305

0.315

0.325

Ω
m
,0

66.4

67.2

68

68.8

69.6

H
0

0.786 0.798 0.81 0.822 0.834

σ8,0

0.957 0.963 0.97 0.976 0.982

ns

0.786

0.798

0.81

0.822

0.834

σ
8,

0

-0.64 -0.32 0 0.32 0.64

∆w
0.983 0.985 0.986 0.988 0.99

at
-0.21 -0.19 -0.17 -0.15 -0.13

∆M
0.285 0.295 0.305 0.315 0.325

Ωm,0

66.4 67.2 68 68.8 69.6

H0

Figure 5.2: The 1σ − 2σ confidence contours for the LwMT model with zt ≥ 0.01, using the
CMB+BAO+Pantheon+RSD likelihoods. In this plot σ8,0 ≡ σ8. From Ref. [536].
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Figure 5.3: The 1σ−2σ confidence contours for the LMT model with zt = 0.01 (or equivalently
at = 0.99), using the CMB+BAO+Pantheon+RSD likelihoods. In this plot σ8,0 ≡ σ8. From
Ref. [536].

In Table 5.1, we also present the corresponding value of the parameter M> ≡ Mc + ∆M that
arises for z > zt.

Clearly, the parameter at (or equivalently zt) reaches the highest (lowest) eligible value
imposed by the prior in order to achieve the best possible quality of fit, favoring an ultra low
redshift transition. One could argue that the timing of the transition is fined tuned, however
since the dark energy has started dominating at low redshifts, we naturally expect that new
physics could emerge in that area. Most importantly we observe, that despite allowing for an
extra degree of freedom through the parameter ∆w, the data seem to neglect it. Since zt ≈ 0.01
is favored by the data, the parameter ∆w becomes irrelevant due to the fact that for zt = 0.01,
∆w would modify H(z) only in a non existing data area (z < 0.01). Therefore, we repeat the
analysis considering only a transition on M (“Late M Transition” - LMT ) setting ∆w = 0 and
at = 0.99 (or equivalently zt = 0.01), i.e. the maximum of the posterior of at for the LwMT
model. The best fit values of the LMT model with zt = 0.01 are shown in Table 5.2, while the
corresponding 1σ − 2σ confidence contours are showing in Fig. 5.3.
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Parameter best-fit mean±σ 95.5% lower 95.5% upper

Ωm,0 0.3088 0.3082+0.0052
−0.0058 0.2976 0.3193

ns 0.9697 0.968+0.0038
−0.0037 0.9606 0.9754

H0 67.88 67.89+0.42
−0.40 67.06 68.71

σ8 0.8085 0.8084+0.0058
−0.0061 0.7963 0.8205

∆M −0.170 −0.172± 0.012 −0.195 −0.149
M> ≡Mc + ∆M −19.410 −19.412± 0.012 −19.435 −19.389

− lnLmin 1917.52
χ2

min 3835

Table 5.2: The best fit values and the 1σ−2σ constraints of the parameters for the LMT model
and zt = 0.01 (or equivalently at = 0.99) using the CMB+BAO+Pantheon+RSD likelihoods
described above.

Comparing Table 5.1 with Table 5.2 and Fig. 5.2 with Fig. 5.3, we confirm that the
introduction of ∆w has basically no effect in the quality of fit, i.e. on the χ2 value. It is
interesting to note that the inferred value of M> = −19.41 mag fully agrees with the CMB
constraint of the absolute magnitude M = −19.40 mag [543], indicating the mismatch between
the local calibration of the SnIa absolute magnitude and the value inferred from the other probes
is very significant, suggesting that the designation M tension/crisis is truly more suitable to
describe the H0 crisis [541, 542]. So, it is only natural to wonder if some other popular dark
energy models in the literature that attempt to explain the Hubble crisis are consistent with
the Cepheid measurement Mc and how can their quality of fit compare with the transition
models presented above. This case will be discussed extensively in the following section, where
we perform a comparison between the transition models LwMT and LMT with some popular
smooth deformation dark energy models.

5.2 Comparison of Different Dark Energy Models

In order to truly resolve the Hubble crisis, the selected dark energy model should not only
provide a consistent measurement for M with Mc at the 1σ level, but also a χ2 value similar (or
even better) to ΛCDM. In this section, we compare the transition models LwMT and LMT
with some popular smooth deformation dark energy models following three different methods:

• Impose a flat prior on the absolute magnitude M ∈ [−19.28,−19.2] mag, forcing all
models (both the transitions and the smooth deformations ones) to be consistent with
the Cepheid absolute magnitude Mc measurement [541,544] at the 1σ level. This analysis
is studied in Subsection 5.2.1.

• Impose the local Cepheid calibrated gaussian prior by SH0ES on the absolute magnitude
Mc = −19.24± 0.04 mag [541]. This case will be discussed in Subsection 5.2.2.

• Follow the usual method that is adopted in the literature, by imposing the SH0ES value
of H0 [518], allowing at the same time the absolute magnitude M to vary freely. This is
illustrated in Appendix E as a complementary analysis.
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Regrading the considered smooth deformation models, we select the wCDM model with a
Hubble parameter (1.69) neglecting radiation and neutrinos at late times and the CPL model
with a Hubble parameter (1.71), assuming Ωr,0 = 0 and setting w1 = wa. Furthermore, we
consider the phenomenologically emergent dark energy (PEDE) model which shows significant
promise in resolving the H0 problem. This model, was first discussed in Ref. [234] with an
equation of state of the form

wDE(z) = − 1

3 ln(10)
(1 + Tanh[log10(1 + z)])− 1 , (5.4)

with a corresponding Hubble parameter

H(z) = H0

√
Ωm,0(1 + z)3 + (1− Ωm,0) · [1− Tanh (log10(1 + z))] . (5.5)

The basic advantage of PEDE, is that it has the same degrees of freedom as ΛCDM. Hence,
taking into consideration the transition models LwMT with zt > 0.01 and LMT with zt = 0.01
along with the ΛCDM model itself we have a total of six different models.

5.2.1 Dark Energy Models Comparison using a Flat Prior on M

In the current subsection we perform a Monte Carlo Markov Chain (MCMC) analysis using
the likelihoods described above and adopting the flat prior on the SnIa absolute magnitude
M ∈ [−19.28,−19.2] mag, forcing all the considered models to be consistent with the Cepheid
calibrated measurement Mc at the 1σ level. For the transition model LwMT we use Eq. (5.2)
as the SnIa absolute magnitude and Eq. (5.3) as the equation of state, leaving ∆M as a free
parameter, while for the transition model LMT we use only Eq. (5.2) as the SnIa absolute
magnitude. Clearly, the transition models are the only models that can by construction escape
from the imposed flat prior on M . The best fit values of the cosmological parameters as well
as the 1σ − 2σ confidence contours are illustrated in Table 5.3 and Fig. 5.4 respectively.

Parameters ΛCDM wCDM CPL LwMT PEDE LMT
(zt ≥ 0.01) (zt = 0.01)

Ωm,0 0.2564+0.0018
−0.0019 0.2571+0.0019

−0.0020 0.2719+0.0041
−0.0044 0.3066± 0.0063 0.2582± 0.0020 0.3082± 0.0053

ns 0.992± 0.003 0.972± 0.004 0.967± 0.004 0.968± 0.004 0.971± 0.003 0.968± 0.004
H0 72.40± 0.16 73.99+0.26

−0.27 72.38± 0.48 68.03± 0.55 73.90+0.17
−0.19 67.89± 0.40

σ8 0.8045+0.0072
−0.0081 0.8507+0.0084

−0.0083 0.8511+0.0084
−0.0081 0.8088± 0.0063 0.8517± 0.0059 0.8084± 0.0059

S8 0.7437± 0.0077 0.7876± 0.0084 0.8103± 0.0100 0.8177+0.0101
−0.0103 0.7901± 0.0065 0.8194± 0.0100

M ∼ −19.28 ∼ −19.28 ∼ −19.28 −19.24 (M<) ∼ −19.28 −19.24 (M<)
∆M - - - −0.170± 0.011 - −0.172± 0.011

M> ≡Mc + ∆M - - - −19.410± 0.011 - −19.412± 0.011
∆w - - - unconstrained - -
at - - - > 0.987 - -
w0 - −1.162+0.021

−0.019 −0.844+0.077
−0.089 - - -

wa - - −1.27+0.38
−0.31 - - -

χ2
min 3964 3889 3875 3834 3886 3835

∆χ2
M - −75 −89 −130 −78 −129

Table 5.3: The 1σ constraints of the parameters for all the dark energy models explored
in this Chapter when the flat prior M ∈ [−19.28,−19.2] mag is imposed, using the
CMB+BAO+Pantheon+RSD likelihoods described above.
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Figure 5.4: The 1σ − 2σ confidence contours for the common parameters of the ΛCDM,
CPL, wCDM and PEDE dark energy models corresponding to the constraints of Table
5.3 imposing the flat prior M ∈ [−19.28,−19.2] mag. For the contours, we used the
CMB+BAO+Pantheon+RSD likelihoods. The M prior severely constrains the best fit of M
to the lowest possible value, displaying the tendency of the models to provide a significantly
lower value for M . In this plot σ8,0 ≡ σ8. From Ref. [536].

Obviously, this prior is an artificial one, since the correct prior is the gaussian one. However
the use of the flat prior helps estimating the impact of the local calibration on the quality of
fit of the various models.

According to Table 5.3 all models, except the transition ones, provide a H0 value that is
consistent with the local measurement of H0 by the SH0ES collaboration [518] and M ∼ −19.28
mag, i.e. the lowest eligible value of the imposed prior. This behavior displays the tendency
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of the models to give a significantly lower value of M . On the contrary, the transition models
provide a H0 value within the 1σ level to the typical ΛCDM value reported by the Planck
mission [18], providing at the same time M ≈ −19.4 mag as expected. Notice, that ΛCDM has
the worse overall fit due to the fixed value of M to the local Mc value. In this case the SnIa
data constrain the luminosity distance of ΛCDM to values inconsistent with CMB and BAO
showing that ΛCDM is unable to resolve the M crisis [541, 542]. On the contrary, the more
flexible wCDM, CPL and PEDE models provide significantly better fit but still much worse
than the transition models LwMT and LMT as shown in Table 5.4.

Datasets ΛCDM wCDM CPL LwMT (zt ≥ 0.01) PEDE LMT (zt = 0.01)

χ2
min CMB 2858 2786 2779 2783 2784 2781

χ2
min BAO 46 33 42 10 30 11

χ2
min Pantheon 1049 1051 1034 1024 1052 1027
χ2

min RSD 12 19 20 17 20 16

Total χ2
min 3964 3889 3875 3834 3886 3835

Table 5.4: The individual χ2
min of each likelihood for all the dark energy models studied in the

present Chapter using the flat prior M ∈ [−19.28,−19.2] mag.

5.2.2 Dark Energy Models Comparison using a Local Prior on M

In the current subsection we perform a MCMC analysis using the likelihoods described above
and adopting the gaussian prior on the SnIa absolute magnitude Mc = −19.24±0.04 mag. The
best fit values of the cosmological parameters as well as the 1σ − 2σ confidence contours are
shown in Table 5.5 and Fig. 5.5 respectively.

Parameters ΛCDM wCDM CPL LwMT PEDE LMT
(zt ≥ 0.01) (zt = 0.01)

Ωm,0 0.3022+0.0051
−0.0052 0.2943± 0.0065 0.2974+0.0067

−0.0068 0.3073+0.0063
−0.0062 0.2789± 0.0049 0.3082± 0.0053

ns 0.9704± 0.004 0.968± 0.004 0.967± 0.004 0.968± 0.004 0.963± 0.003 0.968± 0.004
H0 68.36± 0.4 69.47± 0.72 69.25± 0.73 67.96± 0.55 71.85± 0.45 67.89± 0.40
σ8 0.8076+0.0058

−0.0062 0.8215+0.0095
−0.0097 0.8248+0.0096

−0.0097 0.8084+0.0064
−0.0065 0.8531± 0.0059 0.8085± 0.0057

S8 0.8105+0.0097
−0.01 0.8135± 0.0098 0.8210+0.0107

−0.0106 0.8181± 0.0100 0.8226± 0.0095 0.8194± 0.0099
M −19.40± 0.01 −19.38± 0.02 −19.37± 0.02 −19.26± 0.04 −19.33± 0.01 −19.24± 0.04

∆M - - - −0.145+0.038
−0.035 - −0.168± 0.039

M> - - - −19.410± 0.011 - −19.411± 0.011
∆w - - - unconstrained - -
at - - - > 0.986 - -
w0 - −1.050± 0.027 −0.917± 0.078 - - -
wa - - −0.53+0.33

−0.28 - - -

χ2
min 3854 3851 3848 3833 3867 3835

∆χ2 - −3 −6 −21 +13 −19

Table 5.5: The 1σ constraints of the parameters for all the dark energy models explored in
the present Chapter when a gaussian prior Mc = −19.24 ± 0.04 mag is imposed, using the
CMB+BAO+Pantheon+RSD likelihoods described above.
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Figure 5.5: The 1σ − 2σ confidence contours for the common parameters of the ΛCDM,
CPL, wCDM and PEDE dark energy models corresponding to the constraints of Table 5.5
imposing the gaussian prior Mc = −19.24 ± 0.04 mag. For the contours, we used the
CMB+BAO+Pantheon+RSD likelihoods. In this plot σ8,0 ≡ σ8. From Ref. [536].

The transition LwMT and LMT models perform better than the rest of the models, providing
not only an absolute magnitude value consistent with the Cepheid calibrated value Mc (the
only ones) but also a better quality of fit with respect to ΛCDM. Regarding the quality of fit,
the wCDM and CPL models achieve a slightly better fit to data compared to ΛCDM, while the
PEDE model has a significantly worse fit to data, in agreement with previous studies [236].
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5.2.3 Model Selection

For the proper identification of the optimal model, we also need to compare the statistical
significance of the considered models taking into account the number of parameters and not only
the χ2 value. In this subsection we focus only on the gaussian prior case as it uses the actual
Cepheid prior from the SH0ES collaboration. Therefore, we consider the Akaike Information
Criterion (AIC) [552,553] which is defined as

AIC ≡ −2 lnLmax + 2Ntot = χ2
min + 2Ntot , (5.6)

where Ntot corresponds to the total number of free parameters of the considered model and
Lmax corresponds to the maximum likelihood. This criterion penalizes the considered models
for any extra parameter in such a way that the model with the lowest value is supported the
most. In particular, using Eq. (5.6) we calculate the AIC values for all the models of Table
5.5 and generate the corresponding differences ∆AIC ≡ AICmodel − AICΛCDM. The specific
differences of all the considered DE models are shown in Table 5.6. If |∆AIC| ≤ 2, then the
compared models can be interpreted as consistent with each other, while if |∆AIC| ≥ 4 it is
an indication that the model with the larger AIC value is disfavored [553].

Gaussian M Prior Case ∆χ2 ∆AIC lnB

ΛCDM − − −
LMT (zt = 0.01) −19 −17 +9.1
LwMT (zt ≥ 0.01) −21 −15 +6.2

wCDM −3 −1 +2.2
CPL −6 −2 −2.4

PEDE +13 +13 −6.5

Table 5.6: ∆χ2 and corresponding ∆AIC and lnB values for all models of Table 5.5 with
respect to ΛCDM. Negative values of ∆χ2 and ∆AIC and positive values of lnB show that a
model is favored over ΛCDM.

According to the third column of Table 5.6, the transition models are strongly favored over
ΛCDM, while the PEDE model is strongly disfavored.

Furthermore, we consider the MCEvidence package [554] which computes Bayesian evi-
dences, i.e. the marginal likelihoods, of each model of Table 5.5 taking into account the relevant
MCMC chains. MCEvidence, uses the k nearest neighbour of the Mahalanobis distances [555]
in the parametric space which corresponds to the k = 1 case that minimizes any inaccuracies
(see Ref. [555] for more details). Using the revised Jeffreys’ scale [556], we can compare the
| lnB| value of two different models (B corresponds to the Bayes factor) and see which one of
the two models is favored by the data. In particular, if | lnB| < 1 the two considered models can
be interpreted as consistent with each other, if 1 < | lnB| < 2.5 then the model with the larger
| lnB| is weakly favored, if 2.5 < | lnB| < 5 then the model with the larger | lnB| is moderate
favored, while if | lnB| > 5 the model with the larger | lnB| value is strongly favored. In the last
column of Table 5.6, we show the lnB difference with respect to ΛCDM for the M prior case,
so the positive (negative) values indicate that the model is favored (disfavored) over ΛCDM.
Clearly, the wCDM and CPL are weakly favored and disfavored respectively, the PEDE model
is strongly disfavored whereas the transition models LwMT and LMT are strongly favored
over ΛCDM in consistency with the results of the AIC.
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5.3 In Brief

In this Chapter we have considered two recently proposed dark energy models with a transi-
tion at a recent redshift zt that have been proposed as possible solutions of the Hubble tension
and compared their quality of fit with up to date cosmological data. The first one that we
call LMT includes a transition on the absolute magnitude M of the form of Eq. (5.2), while
the second one also includes a transition in the equation of state parameter wDE of the form
of Eq. (5.3) on top of the transition on M . Furthermore, we compared the transition models
LwMT and LMT with three well known smooth H(z) deformation dark energy models that
attempt to resolve the Hubble crisis (wCDM, CPL and PEDE) as well the standard ΛCDM
model. Using appropriate statistical criteria such as the Akaike Information Criterion and the
Bayes factor, we found that the transition models are strongly favored over ΛCDM, wCDM is
weakly favored, CPL is weakly disfavored while PEDE is strongly disfavored by the data. The
transition models LMT and LwMT are not only strongly favored by the data, giving a quality
of fit similar to ΛCDM, but they have the additional advantage that can, by construction, be
consistent with the SnIa absolute magnitude Mc measured by Cepheid calibrators in contrast
with the smooth smooth H(z) deformation dark energy models.

If these transition models are truly realized in Nature, then they would lead naturally to
a similar transition of the ratio Geff/GN to values lower than unity, addressing as a result
simultaneously the growth tension [535]. In particular, for the transition models LMT and
LwMT we have {

Geff

GN
= 1 + ∆Geff

GN
, for z > zt

Geff

GN
= 1, for z < zt

}
. (5.7)

But, without loss of generality we can assume that

ln

(
1 +

∆Geff

GN

)
' ∆Geff

GN

, (5.8)

since ∆Geff/GN � 1. So, Eq. (4.23) takes the form [536]

∆M = −5 b

2

ln
(
Geff

GN

)
ln(10)

. (5.9)

Using Eq. (5.7) for z > zt, it is straightforward to show that

ln

(
Geff

GN

)
' ∆Geff

GN

. (5.10)

Therefore, substituting Eq. (5.10) in (5.9) and solving with respect to b, we derive [536]

b = −2 ln(10)

5

∆M
∆Geff

GN

. (5.11)

So, based on Eq. (5.11) we can constrain the value of b taking into account that b should
also obey the general bounds |b| ∈ [bmin,+∞), where the +∞ is the ΛCDM value. Various
works in the literature have reported constrains on the ratio ∆Geff/GN, hence using these
values as well as the values indicated in Table 5.2 we can constrain the allowed values of b.
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In particular, measurement from up to date primitive element abundances, cosmic microwave
background as well as nuclear and weak reaction rates report |∆Geff/GN|min = 0.05 [557].
Substituting this value in Eq. (5.11) and setting the 2σ upper bound from Table 5.2, i.e.
setting |∆M |min = −0.172 + 2× 0.012 = −0.148 mag we derive

bmin,0.05 = (−∞,−2.7] ∪ [2.7,+∞) . (5.12)

Similarly measurements from the Hubble diagram SnIa [558] as well as from Paleontology [559]
report |∆Geff/GN|min = 0.1 that corresponds to

bmin,0.1 = (−∞,−1.4] ∪ [1.4,+∞) . (5.13)

This range includes the b = −3/2 value considered by most previous studies [455,495].
It is important to note here that these transition models are not without a physical the-

oretical basis. As we discussed in Subsection 5.1, such transitions could occur in the context
of a minimally coupled scalar field in GR either of the quintessence or of the phantom type
with the scalar field rolling down or up the potential respectively. Another quite interesting
physical mechanism in the context of scalar tensor theories that could in principle reproduce
the behavior of the transition models includes a very recent false vacuum decay [560,561]. This
model would in principle induce a transition on Geff/GN leading to the required transition of
the absolute magnitude M . Specifically, for a bubble with an energy scale similar to the cos-
mological constant, the scale of the bubbles would be Rb = δ/H0 where δ is a coefficient that
is given as [538,560,561]

δ = 4B1 ln

(
Mpl

Tc

)−1

, (5.14)

where B1 is a constant and Tc is the transition temperature energy scale. Plugging H0 =
70 km s−1 Mpc−1 and Tc = 2.7 K we derive Rb ' 20 Mpc. Even though this scale is significantly
lower than the transition redshift value zt = 0.01 value that is considered in this Chapter and
can not be studied using the above likelihoods, recent studies using Cepheid [538] and Tully
Fisher data [537] have pointed out towards this direction.

102



Chapter 6
Hints of Modified Gravity in Sub-Millimeter
Scales

If ΛCDM is truly the correct scenario that describes our Universe, then it is only natural to
expect that its predictions would be consistent with observations on all scales. In the previous
Chapters we mainly focused on the inconsistencies that ΛCDM faces on cosmological scales.
Interestingly, however, there are some predictions on small scales, i.e. on scales of a few kpc
and below, that seem to disagree with the predictions of the concordance model [562–565]. A
quite appealing scale that we choose to focus throughout this Chapter and is directly connected
with the existence of dark energy corresponds the sub-millimeter (sub-mm) scales.

Actually, in the context of a ΛCDM scenario we expect the dark energy scale λ that corre-
sponds to the cosmological constant to be

λΛ ≡ 4

√
~ c
ρΛ

(1.67)
===⇒ λΛ ≈ 0.085 mm , (6.1)

where we used Ωm,0 = 0.3 and H0 = 70 km s−1 Mpc−1, i.e. a value that lies in the intermediate
are of the Planck [18] and the SnIa measurements [518]. Therefore, it is only natural to expect to
find observational signals in the form of new forces on the sub-mm scales, that either confirm or
contradict the standard ΛCDM scenario. In fact, recent analyses [566,567] that used data from
short range gravity experiments [568–570] discovered a 2σ deviation from Newtonian gravity
assuming an oscillating parametrization for the potential.

In the literature, the parametrizations of the potential that are most commonly used in
order to quantify deviations from the Newtonian gravity, include a Yukawa type [568,569,571]
or a power law type [571] correction in the gravitational potential. In particular, for the Yukawa
correction we have a potential of the form [568,569,571]

Veff = −GNM

r
(1 + α e−mr) , (6.2)

while for the power law correction we have [571]

Veff = −GN M

r

[
1 + βk

(
1mm

r

)k−1
]
. (6.3)
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However, recent analyses argue that an oscillating form of the potential [566,567]

Veff = −GNM

r
[1 + α cos(mr + θ)] , (6.4)

provides a better quality of fit compared to the popular Yukawa correction (6.2)1. The three
aforementioned parametrizations not only seem to be consistent with short range gravity ex-
periments but also are well motivated theoretically in the context of a large variety of mod-
ified gravity theories such as massive Brans Dicke and scalar tensor theories [572–574], f(R)
gravities [575–577], some braneworld models [578–581], compactified extra dimension mod-
els [192,193,582–585] as well as nonlocal gravity theories [566,586–588].

One short range gravity experiment that is constructed to identify deviations from Newto-
nian gravity and has received a lot of attention lately is the Washington experiment [568,569].
In this Chapter, we review the experiment (its structure, measurements etc.) and using the
available data, we apply the maximum likelihood method considering two additional novel po-
tential forms that deviate from Newtonian gravity and Eqs. (6.2)-(6.4) in an attempt to identify
any hidden signals of a modified gravity theory on sub-mm scales.

6.1 Review of the Washington Experiment

The Washington experiment is a torsion based experiment with an apparatus that is illus-
trated in the following figure

Figure 6.1: The Washington experiment setup (see the text for details). From Ref. [568].

It includes a fiber pendulum of 82 cm long that is connected to a slim ring with 10 equally
distant cylindrical holes of 9.5mm diameter (yellow plate in Fig. 6.1). The slim ring is placed
above a circular attractor with 10 equally distant identical holes that rotates (blue plate in in

1In Eqs. (6.2)-(6.4), a, β, k and θ correspond to parameters that are constrained by the data.
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Fig. 6.1). The test-bodies that measured the gravitational interaction were the holes that lead
the attractor to be twisted by a torque given by

N(φ) = −∂V (φ)

∂φ
, (6.5)

where V (φ) corresponds the potential energy of the ring and φ is the angle with respect to the
pendulum.

The data reported by the experiment were constructed by taking the differences between
the measured torques τ and their corresponding Newtonian values (τN), i.e. constructing the
torque residuals as δτ ≡ τ − τN . The data acquisition process was repeated for two additional
setups using the same detector but changing the thickness of the attractor disk reducing the
systematic errors and were called Experiments II and III respectively, while the apparatus of
Fig. 6.1 was called Experiment I, giving a total of 87 datapoints. The compilation of the
torque residuals are shown in Table F.1 in Appendix F. The measured torques residuals were
fitted in Refs. [568, 569] adopting both a Yukawa (6.2) and a power law (6.3) potential form.
A later reanalysis [566] of the torque residuals of the Washington experiment, showed that an
oscillating potential of the form (6.4) (blue line) provides a significantly better cosmological fit
compared with a Yukawa potential (6.2) (pink line) as demonstrated in Fig. 6.2.
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Figure 6.2: Residual torque data (red points) from the Washington experiment along with the
best fit parameterizations (6.2)-(6.4). From Ref. [566].

These results (if not due to systematic effects) clearly indicate that similar signals of more
general parametrizations may be hidden in the data of the Washington experiment. These
hidden signals can be associated with specific modified theories of gravity.
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6.2 Fit of Different Parametrizations on the Washington

Experiment Data

In order to search for any hints of a modified theory of gravity hidden on short range
experiments, we consider a generalized potential parametrization of (6.3) of the form

Veff = −GN M

r

[
1 + βk

(
1mm

c r

)k−1
]
, (6.6)

as well as a potential parametrization that is given by

Veff = −GN M

r

[
1 + α

cos(mr)

r

]
, (6.7)

which is similar to (6.4). Furthermore, in the data comparison we present the parametrizations
(6.2), (6.4) as well as a parametrization with a constant correction term, i.e. an offset New-
tonian, that have already been demonstrated in Ref. [566]. Utilizing once more the maximum
likelihood method, we construct the relevant χ2 function as [566]

χ2(α′,m′, β′, c′) =
N∑
i=1

[δτ(i)− δτj(α′,m′, ri, β′, c′)]2

σ2
i

, (6.8)

where the index i refers to the ith residual of the Washington experiment, the index j describes
the selected theoretical parametrization (j ∈ [1, 5]), N corresponds to the total number of
datapoints, i.e. N = 87 and α′,m′, β′, c′ are parameters to be fit by the data. The primes
are used in order to avoid confusion with the fundamental parameters of each parametrization
discussed above, since in order to directly connect the unprimed with the primed parameters
specific details of the apparatus of the experiment are needed [566].

The results of the maximum likelihood method for the different parametrizations are illus-
trated in the following Table 6.1.

Parametrization χ2

δτ = α′ 85.5
δτ = α′e−m

′r 85.4
δτ = α′ cos(m′r + 3π/4) 70.7

δτ = β′k [1mm/ (c′ r)]k
′−1 82.1

δτ = α′ cos(m′r)/r 85.1

Table 6.1: The best fit value of χ2 for each parametrization using the Washington experiment
torque residual data.

As we can see from the above table, despite the two alternative parametrizations, the oscillating
one discussed in Ref. [566] provides the best quality of fit to the data. It is important to note
here that in the parametrization (6.4), the parameter θ′ = 3π/4 is fixed to the value that
achieves the optimum fit to the data [566].

The statistical significance of the results for the two additional parametrizations, can also be
estimated following the method of Monte Carlo simulation described in Chapter 4. In particular,
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Parametrization Number of Simulated Datasets with Lower Values for
the Parameters than the Real Data

δτ = β′k [1mm/ (c′ r)]k
′−1 290/500

δτ = α′ cos(m′r)/r 170/500

Table 6.2: The results of the Monte Carlo simulations as described in the text.

we consider 500 simulated datasets with redshifts corresponding to the redshift of the actual
data and replace the real torque residuals with simulated datapoints created under a random
normal (gaussian) distribution with a mean value equal to zero and a standard deviation equal
to the 1σ errors of the real data. After constructing the simulated data, we apply the maximum
likelihood method and see how many of the simulated data give lower values for the relevant
parameters of each parametrization than the best fit values indicated by the real data. The
results for the two additional parametrizations are illustrated in Table 6.2. Unfortunately, the
results are not statically significant indicating that the two parametrizations do not improve
the quality of fit to the Washington data.

Nevertheless, the oscillating parametrization (6.4) proposed in Ref. [566] not only provides
the best overall fit but may also have a physical origin. In particular, this parametrization can
be realized in the context of a class of theories including infinite derivatives in the Lagrangian,
i.e. the well known nonlocal theories of gravity. The corresponding Lagrangian of these theories
is given as [589]

LIDG =
1

8 π GN

√
−g [R + α (RF1(�)R +RµνF2(�)Rµν +RµνρσF3(�)Rµνρσ)] , (6.9)

with

Fi(�) =
∞∑
n=0

fi,n

(
�
M2

)n
� = gµν∇µ∇ν (6.10)

and � corresponds to the d’ Alembertian operator. In the context of nonlocal theories of
gravity, the corresponding modified potential is [587]

Veff(r) = −GNM

r
f(r,m) (6.11)

and the function f(r,m) is given as

f(r,m) =
1

π

∫ +∞

−∞
dk

sin(k r)e−τ(k,m)

k
. (6.12)

A common form for the function τ(k,m) is

τ(k,m) =
k2n

m2n
. (6.13)

So, based on the value of the parameter n the exact form of the function f(r,m) is derived
solving Eq. (6.12). For n = 1, Eq. (6.12) gives

f(r,m) = Erf
(mr

2

)
, (6.14)
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Figure 6.3: The function f(r,m) as a function of mr for different n values. The green dashed
line corresponds to the n = 1 value, while the blue dashed line correspond to the n = 20 value.
We also show the approximating function (6.15) for α1 = 0.544, α2 = 0.572 and θ = 0.885π as
a red continuous line. The linear behavior close to the origin dissolves the divergence of the
Newtonian potential. From Ref. [566].

that for mr � 1, Eq. (6.14) is linear and for mr � 1 approaches unity (see green line of Fig.
6.3). However, for a significantly larger value of n (e.g. n = 20), Eq. (6.12) starts as a linear
function and takes the form of a damped oscillation as illustrated in Fig. 6.3 (blue dashed line),
which reproduces the needed behavior of the oscillating parametrizations discussed above. Τhe
produced form of f(r,m) for large values of n, can be mimicked by the following function

f(r,m) =

{
α1mr, for 0 < mr < 1,

1 + α2
cos(mr+θ)

mr
, for 1 < mr,

(6.15)

where α1 = 0.544, α2 = 0.572 and θ = 0.885π. This is also demonstrated in Fig. 6.3 as a red
continuous line.

The nonlocal gravity theories are quite interesting, since they can also provide some theo-
retical advantages over GR. More specifically, in the context of GR unrenormalisable ultraviolet
divergences emerge [590] which in the context of nonlocal gravities are relaxed [589, 591, 592].
Furthermore, nonlocal gravity theories are free of singularities (such as the Big Bang singular-
ity [589]) and they naturally emerge from quantum gravity [593]. Finally, a quite appealing
advantage of this class of theories is their ability to reproduce the observed accelerated expan-
sion of the Universe without the existence of a cosmological constant [594–597].
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6.3 In Brief

In this Chapter we have considered two novel potential parametrizations that deviate from
the Newtonian gravity and using the torque residual data of the Washington experiment we
searched if they could provide a better quality of fit than the ones already discussed in the
literature. In particular motivated by previous results, we studied the parametrizations (6.6)
and (6.7) on top of the usual (6.2)-(6.4) parametrizations and applied the maximum likelihood
method, minimizing Eq. (6.8). From the statistical analysis we showed that the two additional
parametrizations (6.6) and (6.7) do not improve the overall quality of fit and the relevant χ2

differences are not statistically significant.
However, the oscillating parametrization (6.4) provides the best quality of fit to the data,

with a statistical significance of 2σ. If the existence of this signal is not due to some unknown
systematic effect it may provide early evidence for a short distance modification of GR through
a modified theory of gravity (e.g. a nonlocal gravity theory). It is therefore important to purse
this line of research further using additional datasets, improved data analysis methods and
search for further theoretical support of the favored best fit parameterizations.
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Chapter 7
Summary and Future Prospects

7.1 Summary

Undoubtedly, we live in an exciting cosmological era. Since 1998 and the confirmation of the
existence of the cosmological constant, a plethora of alternative cosmological data in the last
years hint towards the conclusion that the concordance model ΛCDM is not the end of the road
and a new more complete theory of gravity is needed. In the present PhD thesis we presented
the basic theoretical and observational challenges of the concordance model and investigated
viable alternative theories that address the challenges in a more fundamental manner.

In Chapter 1, we revised the basic principles of standard cosmology. In particular, we
discussed the concept of the cosmological principle and presented Einstein’s Field Equations.
Moreover, we discussed in detail the idea of the cosmological constant and the concordance
model ΛCDM. Furthermore, we reviewed the main cosmological observables and presented the
basic differences of the geometrical and the dynamical probes, as well as, the basic cosmological
models that can be categorized in two classes: The Friedmann models, i.e. those with ΩΛ,0 = 0
and the Lemaitre models, i.e. with ΩΛ,0 6= 0. Finally, we examined the basic triumphs and
challenges of the concordance model ΛCDM, as well as viable alternative theories that have
been proposed in an attempt to address the challenges in a more fundamental manner including
(but not limited to) f(R) gravity theories, scalar tensor theories, dynamical dark energy models
etc.

In Chapter 2 we constructed an extended compilation of 63 growth data that have been
published from 2006 to 2018 and using this dataset with care, we deduced useful trends for the
probed growth datapoints. After fiducial model correction, we obtained the best fit Ωm,0 − σ8

ΛCDM parameters and showed that they are at a 3σ − 5σ tension with the corresponding
Planck15/ΛCDM values, depending on the selected dataset. However, this tension seems to be
reduced either considering only more recently published datapoints (the growth data published
in the last couple of years) which seem to be significantly more consistent with Planck15/ΛCDM
or by considering a non trivial evolution of the effective Newton’s constant, which can be

parametrized as Geff(z)/GN = 1 + ga
(

z
1+z

)2 − ga
(

z
1+z

)4
, where ga is a parameter and z is the

redshift.

Although a partial cause for this reduced tension is the fact that more recent data tend to
probe higher redshifts (with higher errorbars) where there is degeneracy among different models
due to matter domination, all the considered growth subsamples seem to prefer negative values
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7.1. Summary

for ga, implying that Geff is a decreasing function at low z. Moreover, we showed that the
required behavior for Geff can not be realized in the context of f(R) and scalar tensor modified
gravity theories assuming a ΛCDM background. In the context of f(R) gravities the effective
Newton’s constant is always Geff > GN irrespective of the background expansion in order to
ensure the absence of ghost instabilities. On the contrary, for the scalar tensor theories a
decreasing Geff at low redshifts is only possible if w > −1 and can not be realized in the
context of a ΛCDM background.

A decreasing form of Geff at low redshifts would also leave a characteristic signature in
other geometrical and/or dynamical probes. Such a behavior affects the low l CMB angular
power spectrum due to the ISW effect. Hence, we utilize the MGCAMB and MGCOSMOMC numerical
codes that solve the Boltzmann equations for a given set of cosmological parameters that
appear in various modified gravity theories and construct the predicted CMB and large scale
structure observables in the context of various backgrounds. Adopting the aforementioned
phenomenological parametrization for the effective Newton’s constant Geff , we showed that the
CMB data strongly constrain the parameter ga, mildly favoring a negative value for ga.

In Chapter 3 we studied the constraining of a wide range of cosmological observables and
showed that is not monotonically increasing but presents blind redshift spots and optimum
redshift regions with respect to the parameters Ωm,0, the constant equation of state under the
assumption that it is constant and the phenomenological parameter ga that was introduced in
the previous Chapter. At first, we considered the growth rate of matter density perturbations
expressed through the observables fσ8(z) and f(z) and using the compilation of 63 growth data
of the previous Chapter revealed the existence of a blind spot at z ' 2.7 for ga, at z ' 2 for
w and at z ' 1 for Ωm,0. The corresponding optimum redshift regions are at z ' 0.5, at z ' 2
and z ' 1 respectively. These results clearly indicated that the more recent surveys that tend
to increase the redshift of the measurement approaches the blind spot and not the optimum
redshift region. We also studied the f(z) observable since the Euclid mission published some
mock data, showing that the redshift range of the Euclid mission is optimal.

Furthermore, we constructed an updated compilation for the three BAO observables DV ×(
rfids /rs

)
, DA×

(
rfids /rs

)
and H(z)×

(
rs/r

fid
s

)
published from 2009 to 2018 and used it to find

the blind spots and optimum redshift regions for the Ωm,0 and w cosmological parameters. For
the observable DV ×

(
rfids /rs

)
we showed the existence of a blind spot at z ' 1.2, while the

optimum redshift region is at z ' 0.6 for the parameter Ωm,0. On the contrary, for the same
observable with respect to the parameter w there is no blind redshift spot while the optimum
redshift region is at z > 1.2. For the DA ×

(
rfids /rs

)
we find a similar behavior even though

the blind redhsift spot with respect to Ωm,0 appears to a somewhat higher redshift z ' 2
and the sensitivity of this observable is significantly reduced compared to the sensitivity of
DV ×

(
rfids /rs

)
. Regarding the H(z) ×

(
rs/r

fid
s

)
observable we found that there is no blind

redshift spot, while the sensitivity appears to increase monotonically with redshift for both
the Ωm,0 and w parameters. Similar conclusions were observed using cosmic chronometer data
that also measure the H(z), but the BAO are much more constraining compared to the cosmic
chronometers.

Moreover, we used the binned JLA SnIa as well as the standard gravitational wave sirens
expressed through the distance modulus µ and µgw respectively and discovered that the con-
straining power is monotonically increasing for the distance modulus. In addition, we intro-
duced a new statistic of the form SOp (z) ≡ ∆O

∆p
(z)·V 1/2

eff including the effective survey volume Veff ,
as a measure of the constraining power of a given observable O with respect to a cosmological
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parameter p as a function of redshift z. For this new statistic, the blind spots are illustrated
as roots, while the optimum redshift region appears as maxima of S. Finally, using the only
available datapoint from the standard siren GW170817, we showed that a drastic improvement
is needed in order to successfully constrain Geff in general.

In Chapter 4 we focused on the Pantheon SnIa dataset and performed a tomographic
analysis. In the context of ΛCDM, we obtained the best fit values of the absolute mag-
nitude M and/or Hubble constant H0 and presented weak evidence of a local variation of

M ≡ M + 5 log10

[
c/H0

1Mpc

]
+ 25 at low redshifts (z . 0.2), with respect to the best fit of the

full dataset. This variation reaches the 2σ level if the systematic uncertainties are ignored and
falls approximately at the 1σ level if the systematic uncertainties are included. This interesting
trend was confirmed for the case of the ignored systematic uncertainties not only by fixing Ωm,0

to its best fit value indicated by the full dataset and considering cumulative subsets of the full
Pantheon compilation but also by ranking the Pantheon data from lower to higher redshifts
and selecting the first 100 datapoints under the assumption of a best fit ΛCDM background.
Then, we shifted the subsample by one point towards higher redshifts covering the entire Pan-
teon dataset. This signal, if physical, can be attributed to a local matter underdensity that
vanishes at large scales or a modified theory of gravity due to a variation of Newton’s constant.
Otherwise, this signal can be due to the existence of statistical and/or systematic fluctuations
of the data.

A lower value of M naturally leads to a local matter underdensity scenario, with δρ0/ρ0 '
−0.10 ± 0.04 due to a higher value of h. In this case, a signal of anisotropy is expected in
the parameter M. Therefore, we used and compared two methods that are widely used for
searching anisotropies. The first one was the Hemisphere Comparison (HC) method and the
second one was the Dipole Fit (DF) method. From the HC method, we found an anisotropy level
that is consistent with simulated isotropic Pantheon like datasets. However, the anisotropic
sky distribution of the Pantheon SnIa data induces a preferred range of directions even in
simulated Pantheon data obtained in the context of isotropic ΛCDM. Constructing a more
isotropically distributed subset of the Pantheon SnIa we showed that the preferred range of
directions disappears. Utilizing this more isotropically distributed subset we found no evidence
for statistically significant anisotropy using either the HC or the DF method.

For a modified gravity scenario, a lower value of M can also be due to a lower value of the
absolute magnitude M in the low redshift regime. This behavior can be explained in the context
of a modified theory of gravity with an evolving Newton’s constant. Adopting the parametriza-
tion presented in Chapter 2 for Geff, we found the best fit values of the phenomenological
parameter ga to be ga = −0.47 ± 0.36, i.e. approximately 1.5σ away from the corresponding
ΛCDM value, further supporting a reduced Newton’s constant compared to GR at low z.

Finally, we considered the possibility that the lower value of M is due to the statistical
fluctuation of the data. If the observed effect is real, then the same behavior should also
appear in a large number of Monte Carlo simulations. Therefore, including the systematic
uncertainties, we sorted the Pantheon data from the lowest to the highest bin and divided the
entire dataset in four equal uncorrelated bins consisting of 262 datapoints. Generating 1000
Pantheon like data and applying the maximum likelihood method we found that the percent of
the simulated Pantheon dataset with a similar behavior (for the first three bins) corresponds
to approximately 5%, reaching the 2σ threshold. This percentage further increases if instead of
the first three bins we consider any three out of the four bins leaving the statistical fluctuation
scenario as a viable explanation. However it is important to note that the first three bins
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correspond to SnIa with z < 0.42, i.e. where dark energy is dominant, hinting towards the
existence of some hidden physics beyond the standard ΛCDM concordance model.

In Chapter 5, we considered two recently proposed dark energy models that have the po-
tential to address both the Hubble and the growth tensions simultaneously. In particular, the
first one included a late time abrupt transition of the absolute magnitude M , of the form
M(z) = M< + ∆M Θ(z − zt), where zt is the redhsift where the transition occurs, M< ≡ Mc

corresponds to the Cepheid value of the absolute magnitude as calibrated by the SH0ES team
and Θ is the Heaviside step function. This model is called LMT . The second dark energy mod-
els discussed is a dark energy model including a transition on the equation of state parameter
wDE on top of the transition on M , of the form wDE(z) = −1 + ∆wΘ(zt − z). This model is
called LwMT .

Modifying the numerical packages CLASS and MontePython (which are similar to MGCAMB

and MGCOSMOMC) accordingly in order to include the transition models LMT and LwMT , we
used up to date CMB, BAO, growth and SnIa compilations, in order to find the corresponding
quality of fit as well as the corresponding best fit values of the parameters. The MCMC analysis
showed that both the transition models give an absolute magnitude consistent with the Cepheid
value of the absolute magnitude Mc. Moreover, despite the extra degree of freedom, the extra
parameter ∆w seems to be ignored by the data.

Next we compared the quality of the transition models LMT and LwMT with three well
known smooth deformation models, such as the wCDM, the CPL and the Phenomenological
Emergent Dark Energy model along with the standard ΛCDM scenario following two methods.
In the first one, we imposed a flat prior on the absolute magnitude M ∈ [−19.28,−19.2] mag,
forcing all models (both the transitions and the smooth deformations ones) to be consistent
with the Cepheid absolute magnitude Mc. In the second one we imposed the local Cepheid
calibrated gaussian prior by SH0ES on the absolute magnitude Mc = −19.24± 0.04 mag. The
results of the flat prior method showed that even though all the discussed models performed
significantly better than ΛCDM, the smooth deformation models give an H0 value consistent
to the SH0ES measurement and M ∼ −19.28 mag, i.e. the lowest eligible value of the imposed
prior. In contrast, the transition models provide a H0 value within the 1σ level to the typical
ΛCDM value reported by the Planck mission, providing at the same time M ≈ −19.4 mag
as expected. The results of the analysis adopting the gaussian prior on the SnIa absolute
magnitude Mc = −19.24 ± 0.04 mag revealed that the transition models not only perform
better than the concordance ΛCDM model and the rest of the models in question, but were
also the only ones consistent with the Cepheid calibrated value Mc.

Nevertheless, for the proper identification of the optimal model, we need to take into account
the number of parameters that give the corresponding χ2 value. Focusing on the gaussian prior
case, we applied appropriate statistical criteria such as the Akaike Information Criterion and the
Bayes factor and found that the transition models have significant advantages over the smooth
deformation models in question. Finally, we shortly discussed possible theoretical models that
can produce the behavior of the transition model, such as some quintessence or phantom fields
as well as a very recent false vacuum decay model.

Finally in Chapter 6, we focused on the sub-millimeter scales in order to search for deviations
from the Newtonian gravity. Considering two novel parametrizations for the effective potential
Veff of an oscillating and a power law form that are motivated by modified theories of gravity
we applied the maximum likelihood method in order to derive the quality of fit. The data that
are used in the statistical analysis correspond to the data of the Washington experiment. The
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results showed that these particular parametrizations do not improve the quality of fit and the
relevant χ2 differences are not statistically significant.

However, in a previous analysis, an oscillating parametrization for the effective potential of
the form Veff = −GNM

r
[1 + α cos(mr + θ)] provides the best quality of fit to the data with a

statistical significance of 2σ. So, if this effect is not due to some unknown systematic effect
it may provide evidence for a short distance modification of GR through a modified theory of
gravity.

7.2 Future Prospects

In this PhD thesis we focused on intriguing open questions of standard cosmology. Motivated
by the basic problems of the concordance model ΛCDM, we presented various phenomenological
parametrizations as well as extended up to date data compilations in an attempt to address
these issues in a more fundamental manner. With that in mind, a number of interesting
extensions can be performed in the near future both at the theoretical level (e.g. providing
theoretical models that explain the observed signatures) and the observational level (e.g. using
even more recent data compilation from the upcoming surveys).

Regarding the theoretical extensions, it would be interesting to see if the results of Chapter 2
that indicate Geff < GN (weaker gravity) at low redshifts can be realized in other more general
modified theories of gravity. This trend may prove a key tool for discriminating between
different modified gravity models. Interestingly, recent works indicate that the weaker gravity
may be possible in the context of teleparallel theories of gravity [598,599] or more general scalar
tensor theories, such as the Horndeski [600–602] and beyond Horndeski theories [603] providing
specific constraints among the terms of the Lagrangian. Moreover, regarding the tomographic
analysis on SnIa performed in Chapter 4 it would interesting to see if this abnormal variation
of M persists in an extended SnIa dataset with a more uniform distribution in the sky (e.g.
using the Pantheon+ dataset that is not yet publicly available). Another interesting extension
to the results of this Chapter would be to apply alternative datasets that are used as standard
candles probes (e.g. γ ray bursts) as well as different statistical tests probing for cosmological
anisotropies in an attempt to identify similar hints of variations in H0 and/or Geff .

In addition, the consideration of alternative background expansion cosmologies may also
affect the results of Chapter 4, thus it would be interesting to see how the general trends and
results alter in the context of different backgrounds H(z). Regarding the transition models dis-
cussed in Chapter 5 it would interesting to include the investigation of whether this gravitational
transition is also apparent in other geological, solar system and astrophysical data [604,605] as
well as the identification for any possible systematic effects in the Cepheid data and parame-
ters that could mimic such a transition on the absolute magnitude M . Finally, concerning the
results of Chapter 6 interesting extensions involve the further investigation of viable theoretical
models that support appropriate parametrizations that provide good fit to small scale gravita-
tional experiment data in general, as well as to repeat the performed analysis in the context of
other datasets in an effort to identify similar hidden signatures.

We expect that the issues discussed in the present thesis will be further clarified in the next
decades, when new improved observational data from upcoming missions will be published. An
incomplete list of these missions that are going to be launched in the next few years are the
following (see Ref. [538] for a more complete list)
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• Euclid Mission: The Euclid mission [606] will launch in March 2023 and aims at mapping
the geometry of the Universe providing a better knowledge to the nature of the dark
matter and dark energy. This mission will use WL and Galaxy Clustering measurements
to estimate the BAO up to z ' 2.

• LSST: The Large Synoptic Survey Telescope (LSST) [607] is a ground telescope that will
start its observations on late 2022. This mission aims to map and catalogue galaxies, in
order to study their impact on the distortion of spacetime.

• CMB-S4: The fourth generation of the ground based CMB experiment (CMB-S4) [608]
aims at testing GR at large scales, probing the B-mode polarization signature of primor-
dial gravitational waves, the number and masses of the neutrinos as well as searching for
evidence of new light relics and constraining the nature of dark energy. It is anticipated
to start its observations on 2027.

• JWST: The James Webb Space Telescope (JWST) [609] is the new generation experiment
that replaces the Hubble Space Telescope and will broaden its discoveries probing galaxies
at z ≤ 15. The JWST launched on 25 December of 2021.
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Appendix A
Analytical Calculations of Standard Cosmology

A.1 Cosmological Perturbation Theory

As we discussed in Chapter 1 our Universe at large scales is homogeneous and isotropic.
However, if we move to smaller scales we will see that the Universe contains structures like
clusters and galaxies. Therefore in order to accurately describe it we need to introduce in-
homogeneities and study their evolution. Naturally, we expect that these inhomogeneities are
quite small, so we can consider a metric that slightly deviates from the FLRW one (1.2) and can
be written as a sum of an unperturbed FLRW part plus some extra terms that we encompass
in the “perturbed” metric.

When we deal with small perturbations, the basic tool that is used is the linear perturba-
tion theory. In this context, any quantity is given as the sum of its background value that
corresponds to the homogeneous and isotropic model, and a perturbation that deviates from
its background value. With the term linear we refer to the fact that the perturbations are
important up to the first order and that a product of two or more perturbations should be
ignored.

Considering small perturbations δgµν around the FLRW metric ḡµν , we can write that

gµν = ḡµν + δgµν . (A.1)

Let us start by rewriting the FLRW metric (1.2) as follows

ds2 = c2 dt2 − a2(t)

[
dr2

1− k r2
+ r2(dθ2 + sin2 θ dφ2)

]
= c2 dt2 − a2(t)

[
dr2(1− k r2) + k r2 dr2

1− k r2

]
+r2 dΩ2 = c2 dt2 − a2(t)

[
dr2 + k

r2 dr2

1− k r2
+ r2 dΩ2

]
= c2 dt2 − a2(t)

[
d~x2 + k

(~x · d~x)2

1− k ~x2

]
⇒

⇒ ds2 = c2 dt2 − a2(t) γij dx
i dxj , (A.2)

where γij ≡ δij + k
xi xj

1−k(xp xp)
. Focusing on the flat case, where k = 0, Eq. (A.2) reduces to

ds2 = c2 dt2 − a2(t) δij dx
i dxj .

For convenience, instead of the cosmic time t we will use the conformal time τ , which is defined
as

τ ≡
∫

1

a
dt⇒ dτ =

dt

a(t)
. (A.3)
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Hence, setting c = 1, the flat FLRW background metric is written as

ds2 = dt2 − a2(t) δij dx
i dxj ⇒ ds2 = a2(τ)

[
dτ 2 − δij dxi dxj

]
. (A.4)

Based on the previous equation, the general perturbed metric reads [610]

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − 2Bi dx

i dτ − (δij + hij)dx
i dxj

]
, (A.5)

where A, Bi and hij are functions of space and time. At this point it is extremely useful to
use the decomposition theorem which allows us to divide the perturbations in three indepen-
dent types: scalar, vector and tensor perturbations. Each type evolves independently, so the
functions Bi ad hij are given by [610]

Bi = ∂iB + B̂i ,

hij = 2C δij + 2

(
∂i∂j −

1

3
δij∇2

)
E +

(
∂i Êj + ∂j Êi

)
+ 2Êij , (A.6)

where the hatted quantities are divergenceless. In order to avoid any problems arising from
the fact that the metric perturbations are not uniquely defined, we further define specific
quantities that are combinations of metric perturbations and do not transform under a change
of coordinates. These are the Bardeen variables defined as [610]

ψ ≡ A+H(B − E ′) + (B − E ′)′ ,

φ ≡ −C −H(B − E ′) +
1

3
∇2E ,

φ̂i ≡ Ê ′i − B̂i ,

with H = a′/a, i.e. the Hubble parameter in conformal time. Notice that in this section the
prime corresponds to derivation with respect to the conformal time (and not with respect to the
scale factor or redshift as in the one that follows). In order to further simplify the calculations,
we choose the so called “Newtonian gauge” where B = E = 0. In this case the Bardeen
variables ψ and φ reduce to

ψ ≡ A+H����
��:0

(B − E ′) +���
���:0

(B − E ′)′ ⇒ ψ = A , (A.7)

φ ≡ −C −H����
��:0

(B − E ′) +
1

3
∇2
���

0
E ⇒ φ = −C , (A.8)

while, the tensor hij reduces to

hij = 2C δij + 2

(
∂i∂j −

1

3
δij∇2

)
E +

(
∂i Êj + ∂j Êi

)
+ 2Êij ⇒ hij = 2C δij , (A.9)

since we keep only the scalar terms. Substituting Eqs. (A.7)-(A.9) in (A.5), the perturbed
metric takes the form

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − (δij + 2C δij)dx

i dxj
]

= a2(τ)
[
(1 + 2A)dτ 2 − (1 + 2C)δij dx

i dxj
]

⇒ ds2 = a2(τ)
[
(1 + 2ψ)dτ 2 − (1− 2φ)δij dx

i dxj
]
, (A.10)
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i.e. conformal time version of Eq. (1.52).
From the perturbed metric (A.10), it is straightforward to obtain the perturbed Einstein’s

Field Equations δGµν = 8πGN δTµν , following the standard procedure discussed in Chapter 1.
Hence, using the definition (1.6) we calculate the following non-zero Christoffel symbols

∴ Γ0
00 =

1

2
g0λ (∂0 gλ0 + ∂0 gλ0 − ∂λ g00) =

1

2
g0λ (2∂0 gλ0 − ∂λ g00)

λ=0
==⇒ Γ0

00 =
1

2
g00∂0 g00 ⇒

Γ0
00 =

1

2a2
(1− 2ψ)

d

dτ

[
a2(1 + 2ψ)

]
⇒ Γ0

00 = H + ψ′ , (A.11)

∴ Γ0
0i =

1

2
g0λ (∂0 gλi + ∂i gλ0 − ∂λ g0i)

λ=0
==⇒ Γ0

0i =
1

2
g00 (∂0 g0i + ∂i g00 − ∂0 g0i) =

1

2
g00∂i g00

⇒ Γ0
0i =

1

2@@a
2
(1− 2ψ)∂i[@@a

2(1 + 2ψ)] = ∂iψ +��
�*0

O(2)⇒ Γ0
0i = ∂iψ , (A.12)

∴ Γi00 =
1

2
giλ (∂0 gλ0 + ∂0 gλ0 − ∂λ g00)

λ=j
==⇒ Γi00 = −1

2
gij∂j g00 = −1 + 2φ

2@@a
2
δij[−∂j(@@a2(1 + 2ψ)]

⇒ Γi00 =
1 + 2φ

�2
�2δ
ij∂jψ = δij∂jψ +��

�*0
O(2)⇒ Γi00 = δij∂jψ , (A.13)

∴ Γ0
ij =

1

2
g0λ (∂i gλj + ∂j gλi − ∂λ gij)

λ=0
==⇒ Γ0

ij = −1

2
g00∂0gij = −(1− 2ψ)

2a2

d

dτ
[(−a2)(1− 2φ)δij]

⇒ Γ0
ij =

1

�2a2
(1− 2ψ)

[
�2a a

′(1− 2φ)δij + a2(−�2φ′)δij
]

= (1− 2ψ) [H(1− 2φ)δij − φ′δij]

⇒ Γ0
ij = Hδij − 2Hφδij − 2ψHδij − φ′δij +��

�*0
O(2)⇒ Γ0

ij = Hδij − [φ′ + 2H(φ+ ψ)] δij ,

(A.14)

∴ Γij0 =
1

2
giλ (∂j gλ0 + ∂0 gλj − ∂λ gj0)

λ=k
===⇒ Γij0 =

1

2
gik∂0gkj =

1 + 2φ

2a2
δik

d

dτ

[
(a2)(1− 2φ)δkj

]
⇒ Γij0 =

1

�2a2
(1 + 2φ)δik[�2a a

′(1− 2φ)δkj + a2(−�2φ)δkj] =
a′

a
δikδkj − φ′δikδkj +��

�*0
O(2)⇒

⇒ Γij0 = Hδij − φ′δij , (A.15)

∴ Γijk =
1

2
giλ (∂j gλk + ∂k gλj − ∂λ gjk)

λ=l
==⇒ Γijk =

1

2
gil∂j glk +

1

2
gil∂k glj −

1

2
gil∂l gjk ⇒

⇒ Γijk = −1 + 2φ

2a2
δil
{
∂j
[
(−a2)(1− 2φ)δlk

]
+ ∂k

[
(−a2)(1− 2φ)δlj

]
− ∂l

[
(−a2)(1− 2φ)δjk

]}
⇒ Γijk = −1 + 2φ

HH2a2 δil
(
Z
Z2a2∂jφ δlk +ZZ2a2∂κφ δlj −ZZ2a2∂lφ δjk

)
= −δilδlk∂jφ− δilδlj∂kφ+ δilδjk∂lφ

+��
�*0

O(2)⇒ Γijk = −(δik∂jφ− δij∂kφ) + δjkδ
il∂lφ . (A.16)

Thus, gathering the previous calculations the non-zero Christoffel symbols are

Γ0
00 = H + ψ′, Γ0

0i = ∂iψ ,

Γi00 = δij∂jψ, Γ0
ij = Hδij − [φ′ + 2H(φ+ ψ)] δij ,

Γij0 = Hδij − φ′δij, Γijk = −(δik∂jφ+ δij∂kφ) + δjkδ
il∂lφ .

In order to derive the Einstein’s Field Equations it is crucial to calculate the perturbed Ricci
tensor Rµν as well as the perturbed Ricci scalar R. The perturbed Ricci tensor components can
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Appendix A. Analytical Calculations of Standard Cosmology

be calculated using the definition (1.9) along with the derived Christoffel symbols (A.11)-(A.16).
The (00)-component is calculated as follows

R00 = ∂λΓ
λ
00 − ∂0Γλ0λ + ΓλλρΓ

ρ
00 − Γρ0λΓ

λ
0ρ =��

�∂0Γ0
00 + ∂iΓ

i
00 −��

�∂0Γ0
00 − ∂0Γi0i +

H
HHH

Γ0
0ρΓ

ρ
00 + ΓiiρΓ

ρ
00−

−HHHHΓρ00Γ0
0ρ − Γρ0iΓ

i
0ρ = ∂iΓ

i
00 − ∂0Γi0i + Γii0Γ0

00 +
��

��*
O(2)

ΓiijΓ
j
00 −��

��*
O(2) ≈ 0

Γ0
0iΓ

i
00 − Γj0iΓ

i
0j = ∂i(δ

ij∂jψ)−
−δii ∂0(H− φ′) + δii(H− φ′)(H + ψ′)− (Hδji − φ′δ

j
i )(Hδij − φ′δij) = ∇2ψ − 3H′ + 3φ′′+

+��
�3H2 + 3Hψ′ − 3Hφ′ −���3H2 + 6Hφ′ +��

�*0
O(2)⇒ R00 = ∇2ψ − 3H′ + 3H(φ′ + ψ′) + 3φ′′ .

(A.17)

The (0i)-component is derived to be

R0i = ∂λΓ
λ
0i − ∂iΓλ0λ + ΓλλρΓ

ρ
0i − Γρ0λΓ

λ
iρ = ∂0Γ0

0i + ∂jΓ
j
0i − ∂iΓ0

00 − ∂iΓ
j
0j + Γ0

0ρΓ
ρ
0i + ΓjjρΓ

ρ
0i−

−Γρ00Γ0
iρ − Γρ0jΓ

j
iρ = ∂0∂iψ + ∂j

(
Hδji − φ′δ

j
i

)
− ∂i(H + ψ′)− ∂i(Hδjj − φ′δ

j
j ) + Γ0

0ρΓ
ρ
0i + ΓjjρΓ

ρ
0i

−Γρ00Γ0
iρ − Γρ0jΓ

j
iρ =����∂0∂iψ +HHH∂iH− ∂iφ′ −HHH∂iH−����∂i∂0ψ − 3∂i(H− φ′) +��

��Γ0
00Γ0

0i +
HH

HH
Γ0

0jΓ
j
0i+

+Γjj0Γ0
0i + ΓjjkΓ

k
0i −��

��Γ0
00Γ0

i0 − Γk00Γ0
ik −

HH
HH

Γ0
0jΓ

j
i0 − Γk0jΓ

j
ik = −∂iφ′ + 3∂iφ

′ + (Hδjj − φ′δ
j
j )∂iψ+

+
(
−δjk∂jφ− δ

j
j∂kφ+ δjkδ

jl∂lφ
)

(Hδki − φ′δki )− (δkj∂jψ) [Hδik − φ′δik − 2H(φ+ ψ)δik]−
−(Hδkj − φ′δkj )(−δjk∂iφ− δ

j
i ∂kφ+ δikδ

jl∂lφ) = −∂iφ′ + 3∂iφ
′ + 3H∂iψ + (��

�δli∂lφ−��∂iφ− 3∂iφ)H

−∂jψHδkjδik + 3H∂iφ+ZZ∂iφ−
HHHδli∂lφ+��

�*0
O(2) = 2∂iφ

′ + 2H∂iψ −����3∂iφH +���
�3H∂iφ⇒

⇒ R0i = 2∂iφ
′ + 2H∂iψ . (A.18)

Similarly, the (ij) component of the perturbed Ricci tensor is equal to [610]

Rij =
[
H′ + 2H2 − φ′′ +∇2φ− 2

(
H′ + 2H2

)
(φ+ ψ)−Hψ′ − 5Hφ′

]
δij+∂i∂j(φ−ψ) . (A.19)

Now we are ready to calculate the perturbed Ricci scalar R using (1.10) as follows

R = gµνRµν = g00R00 +��
��*

0
g0iR0i +��

��*
0

gi0Ri0 + gijRij = g00R00 + gijRij =
1− 2ψ

a2

[
∇2ψ − 3H′+

+3H(φ′ + ψ′) + 3φ′′] +

(
− 1

a2

)
(1 + 2φ)δij

{[
H′ + 2H2 − φ′′ +∇2φ− 2

(
H′ + 2H2

)
(φ+ ψ)−

−Hψ′ − 5Hφ′] δij + ∂i∂j(φ− ψ)} ⇒ a2R = (1− 2ψ)
[
∇2ψ − 3H′ + 3H(φ′ + ψ′) + 3φ′′

]
−

−(1 + 2φ)δijδij
[
H′ + 2H2 − φ′′ +∇2φ− 2

(
H′ + 2H2

)
(φ+ ψ)−Hψ′ − 5Hφ′

]
− (1+

+2φ)δij∂i∂j(φ− ψ) = ∇2ψ − 3H′ + 3H(φ′ + ψ′) + 3φ′′ + 6H′ψ − 3(1 + 2φ)
[
H′ + 2H2 − φ′′+

+∇2φ− 2
(
H′ + 2H2

)
(φ+ ψ)−Hψ′ − 5Hφ′

]
− (1 + 2φ)∇2(φ− ψ) +��

�*0
O(2) = ∇2ψ − 3H′+

+3H(φ′ + ψ′) + 3φ′′ + 6H′ψ − 3H′ − 6H2 + 3φ′′ − 3∇2φ+ 6(H′ + 2H2)(φ+ ψ) + 3Hψ′+

+15Hφ′ − 6H′φ− 12H2φ−∇2(φ− ψ) +��
�*0

O(2)⇒

⇒ R =
1

a2

[
−6(H′ +H2) + 2∇2ψ − 4∇2φ+ 12(H′ +H2)ψ + 6φ′′ + 6H(ψ′ + 3φ′)

]
. (A.20)
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A.1. Cosmological Perturbation Theory

Next, we move on to the Einstein tensor using its definition (1.12) along with Eqs. (A.17)
and (A.20). The (00)-component yields

G00 = R00 −
1

2
g00R = ∇2ψ − 3H′ + 3H(φ′ + ψ′) + 3φ′′ − 1

2
@@a

2(1 + 2ψ)
1

@@a
2
[−6(H′ +H2) + 2∇2ψ

−4∇2φ+ 12(H′ +H2)ψ + 6φ′′ + 6H(ψ′ + 3φ′)] = ∇2ψ − 3H′ + 3H(φ′ + ψ′) + 3φ′′ − 1

2
[−6(H′

+H2) + 2∇2ψ − 4∇2φ+ 12(H′ +H2)ψ + 6φ′′ + 6H(ψ′ + 3φ′)]− ψ(−6)(H′ +H2) +��
�*0

O(2) =

= −���3H′ +HHH∇2ψ + 3Hφ′ +��
�3Hψ′ +���3H′ + 3H2 −HHH∇2ψ + 2∇2φ−��

�6H′ψ −HHHH6H2ψ −��
�3Hψ′ − 9Hφ′

+��
�6ψH′ +HHHH6ψH2 ⇒ G00 = 3H2 − 6Hφ′ + 2∇2φ . (A.21)

The (0i) component is trivially calculated to be

G0i = R0i −
1

2�
��*

0
g0iR = R0i ⇒ G0i = 2∂iφ

′ + 2H∂iψ . (A.22)

After some algebra one can derive the remaining components of the perturbed Einstein tensor
to be [610]

Gij = −(2H′ +H2)δij +
[
∇2(ψ − φ) + 2φ′′ + 2(2H′ +H2)(φ+ ψ) + 2Hψ′ + 4Hφ′

]
δij+

+∂i∂j(φ− ψ) . (A.23)

As a final step for the derivation of the Einstein’s Field Equations, we need to find the
perturbations of the energy momentum tensor Tµν . In a homogeneous background the energy
density ρ, the pressure p as well as the four-velocity uµ are time dependent quantities. On
the contrary in a perturbed Universe, these function may also depend on the position. So, the
perturbation of the energy-momentum tensor is [610]

δT µν = (δρ+ δp)ūµūν + (ρ̄+ p̄) [(δuµ)ūν + ūµ(δuν)] + δp δµν + Πµ
ν , (A.24)

where Πµ
ν corresponds to the anisotropic stress tensor which vanishes for perfect fluids. In the

context of Newtonian gauge (A.5), it is straightforward to show the non-zero components of
the perturbed energy-momentum tensor δT µν are

δT 0
0 = δρ, δT i0 = (ρ̄+ p̄)ui ,

δT 0
j = −(ρ̄+ p̄)(uj +�

��
0

Bj) ≡ −qj, δT ij = −δp δij − Πi
j ,

with ~q = ~u(ρ̄+p̄) where ~υ is the three velocity. Armed with the previous results we can compute
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Appendix A. Analytical Calculations of Standard Cosmology

the linearized perturbed Einstein Field Equations

∴ For µ = i and ν = j with i 6= j, we find

Gij = 8π GNTij ⇒ −(2H′ +H2)δij +
[
∇2(ψ − φ) + 2φ′′ + 2(2H′ +H2)(φ+ ψ) + 2Hψ′+

4Hφ′] δij + ∂i∂j(φ− ψ) = −8π GNΠij ⇒ ∂i∂j(φ− ψ) = 0⇒ φ = ψ , (A.25)

∴ For µ = ν = 0 we derive

G00 = 8π GNT00 = 8π GN g0p T
p
0 = 8π GN

(
g00 T

0
0 + g0i T

i
0

)
⇒ G00 = 8π GN g00 T

0
0 ⇒

(A.25)
====⇒ 3H2 − 6Hφ′ + 2∇2φ = 8π GN a

2(1 + 2φ)(ρ̄+ δρ) = 8π GN a
2(1 + 2φ)ρ̄(1 + δ + 2φ)⇒

⇒ 3H2 − 6Hφ′ + 2∇2φ = 8πGN a
2ρ̄ [1 + 2φ+ δ +��

�*0
O(2)] = 8πGN a

2ρ̄(1 + δ + 2φ)⇒
⇒���3H2 − 6Hφ′ + 2∇2φ =���

���8πGN a
2ρ̄+ 8πGN a

2ρ̄(δ + 2φ)⇒ ∇2φ = 4πGN a
2ρ̄ δ+

+8πGN a
2ρ̄φ+ 3Hφ′ ⇒ ∇2φ = 4πGN a

2ρ̄δ + 3H(φ′ +Hφ) , (A.26)

∴ For µ = 0 and ν = i we obtain

G0i = 8π GNT0i ⇒ 2 ∂i (φ
′ +Hψ) = 8π GN (g0µT

µ
i ) = 8π GN

(
g00T

0
i

)
= 8π GNḡ00T

0
i +��

�*0
O(2)⇒

⇒ 2 ∂i (φ
′ +Hψ) = −8π GN a

2 qi ⇒ ∂i (φ
′ +Hψ) = −4π GN a

2 (ρ̄+ p̄)ui ⇒ ∂i (φ
′ +Hψ) =

= −4π GN a
2 (ρ̄+ p̄)∂iu

(A.25)
====⇒∫ φ′ +Hφ = −4π GN a

2 (ρ̄+ p̄)u , (A.27)

where in (A.25) we dropped the anisotropic stress term (i.e. we considered Πij ≡ 0) and in
(A.27) we assumed that the perturbation decay at infinity in order to perform the integration.
Recall that δ corresponds to the linear matter growth factor. Similarly, the trace-part of the
(ij) component is [610]

φ′′ + 3Hφ′ + (2H′ +H2)φ = 4π GN a
2 δp . (A.28)

In some cases, it is useful to use the continuity and the Euler equations that are obtained from
the conservation law for the energy momentum ∇µTµν . For ν = 0 it is straightforward to show
that the continuity equation is written as [610]

δ′ +

(
1 +

p̄

ρ̄

)
(~∇ ~u− 3φ′) + 3H

(
δp

δρ
− p̄

ρ̄

)
δ = 0 , (A.29)

while the Euler equation is derived for ν = i to be [610]

~u′ +H~u− 3H p̄
′

ρ̄′
~u = −

~∇δp
ρ̄+ p̄

− ~∇ψ (A.30)

A.2 Proof of Eq. (1.49)

We are mainly interested in the evolution of matter fluctuations both at early (i.e. when
radiation dominates) and late times (i.e. when dark energy dominates). Moreover, we focus on
the sub-horizon scales i.e. at scales deep inside the Hubble radius where k � H. For matter
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domination we derive the equations (A.29) and (A.30) in the context of a pressureless fluid
(w = 0) with a very small sound speed defined as

c2
s ≡

δp

δρ
� 1 . (A.31)

At early times, the continuity equation (A.29) for the matter density is written as

δ′m + (1 + w) (~∇ ~um − 3φ′) + 3H
(
c2
s − w

)
δ = 0⇒ δ′m + (~∇ ~um − 3�

�7
0

φ′) + 0 = 0⇒ δ′m = −~∇ ~um ,
(A.32)

while the Euler equation (A.30) takes the form

~u′m +H~um − 3Hw~um = −
~∇δp
ρ̄+ p̄

− ~∇ψ (A.25)
====⇒
w=0

~u′m +H~um = −~∇φ⇒ ~u′m = −H~um − ~∇φ .

(A.33)

Differentiating (A.32) and substituting (A.33) it is straightforward to see

δ′′m = −~∇~u′m
(A.33)
====⇒ δ′′m = −~∇

(
−H~um − ~∇φ

)
⇒ δ′′m = H~∇~um +∇2φ⇒ δ′′m −H~∇~um = ∇2φ

(A.32)
====⇒ δ′′m +Hδ′m = ∇2φ . (A.34)

Since radiation oscillates quickly compared to the Hubble time on small scales, averaging over
time the gravitational potential is only sourced by matter fluctuations, so the Poisson equation
is only sensitive to matter leading (A.27) to take the form

∇2φ = 4πGN a
2ρ̄mδ . (A.35)

Combining (A.34) with (A.35) we find

δ′′m +Hδ′m − 4πGN a
2ρ̄mδ = 0 . (A.36)

At late times, our Universe is a mixture of pressureless matter and dark energy. Since dark
energy does not have fluctuations, Eq. (A.35) is modified to

∇2φ = 4πGN a
2ρ̄m∆ , (A.37)

where ∆ ≡ δm − 3Hum is the comoving density contrast. With similar calculations and taking
into account (A.37), Eq. (A.36) generalizes to [610]

∆′′ +H∆′ − 4πGN a
2ρ̄m∆ = 0 . (A.38)

This is the conformal time equivalent version of (1.49) but now valid on all scales. In the
context of a modified theory of gravity the standard Newton’s constant GN is promoted to the
effective Newton’s constant Geff .
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A.3 Proof of Eq. (1.50)

In this section we will show how to rewrite Eq. (1.49) in terms of the redshift z and of the
scale factor a(t). For the redhsift case, it is easy to see that for a general function q(t) we have

dq

dt
=
dq

dz

dz

dt
=
dq

dz
[−H(z)(1 + z)] = −H(z)(1 + z)q′ ⇒ dq

dt
= −H(z)(1 + z)q′ (A.39)

d2q

dt2
=

d

dt

(
dq

dt

)
=
dz

dt

d

dz

(
dq

dt

)
=
dz

dt

d

dz
(−H(z)(1 + z)q′) = [−H(z)(1 + z)] [−H ′(z)(1 + z)q′

−H(z)q′ −H(z)(1 + z)q′′]⇒ dq

dt
= H(z)H ′(z)(1 + z)2q′ +H2(z)(1 + z)q′ +H2(z)(1 + z)2q′′ ,

(A.40)

where we used the fact that

H =
ȧ

a
= (1 + z)

d

dt

(
1

1 + z

)
= −dz/dt

1 + z
⇒ dz

dt
= −H(z)(1 + z) . (A.41)

In this case the prime stands for differentiation with respect to redshift z and the dot differ-
entiation with respect to cosmic time t. Therefore, from Eqs. (A.39) and (A.40) it is easy to
show that

δ̈ = HH ′(z)(1 + z)2δ′ +H2(1 + z)δ′ +H2(1 + z)2δ′′ ,

δ̇ = −H(z)(1 + z)δ′ .

Substituting these equations in Eq. (1.49) we derive

HH ′(z)(1 + z)2δ′ +H2(1 + z)δ′ +H2(1 + z)2δ′′ + 2H [−H(z)(1 + z)δ′]− 4π Geff ρm δ = 0⇒
:(1+z)2

====⇒ H2δ′′ +HH ′δ′ +
H2

1 + z
δ′ − 2H2

1 + z
δ′ − 4π Geff ρm

δ

(1 + z)2
= 0⇒ H2δ′′ +

[
(H2)

′

2
−

− H2

1 + z

]
δ′ − 4π Geff

ρm,0
a3

δ

(1 + z)2
= 0⇒ H2δ′′ +

[
(H2)

′

2
− H2

1 + z

]
δ′−

−4π Geff
ρm,0
ρcrit,0

ρcrit,0(1 + z)3 δ

(1 + z)2
= 0⇒ H2δ′′ +

[
(H2)

′

2
− H2

1 + z

]
δ′

−4πGeff Ωm,0
3H2

0

8π GN

(1 + z) = 0⇒ H2δ′′ +

[
(H2)

′

2
− H2

1 + z

]
δ′ =

3

2
(1 + z)H2

0

Geff

GN

Ωm,0 δ ,

(A.42)

i.e. Eq. (1.49) in terms of the redshift z.
In order to rewrite this equation in terms of the scale factor a, we need the following useful

derivations

1 + z =
1

a
⇒ dz = − 1

a2
da⇒ da

dz
= −a2 ,

dδ

dz
=
dδ

da

da

dz
= δ′(−a2) = −a2δ′ ,

d(H2)

dz
= 2H

dH

dz
= 2H

dH

da

da

dz
= −2HH ′a2 ,

d2δ

dz2
=

d

dz

dδ

dz
=
da

dz

d

da

(
dδ

dz

)
=
da

dz

d

da

(
−a2δ′

)
=
da

dz

[
δ′′(−a2) + δ′(−2a)

]
= δ′′a4 + 2δ′a3 ,

124



A.4. Proof of Eq. (1.54)

where in this case the prime denotes derivation with respect to the scale factor a. Substituting
these derivations in Eq. (A.42) it is straightforward to show

H2δ′′ +

[
(H2)

′

2
− H2

1 + z

]
δ′ − 4π Geff ρm

δ

(1 + z)2
= 0⇒ H2

(
δ′′a4 + 2δ′a3

)
−
(
A2HH ′a2

A2

+ H2a
)

(−a2δ′) = 4π Geff ρm a
2δ ⇒ H2

(
δ′′a4 + 2δ′a3

)
+
(
HH ′a4 +H2a3

)
δ′ = 4πGeff ρm a

2δ

: 1
H2a4

====⇒ δ′′ + 2a−1δ′ +
H ′

H
δ′ +

δ′

a
=

4π Geff

H2(a)

ρm,0
a5

δ ⇒ δ′′(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′(a) =

=
4π Geff

H2(a)a5

ρm,0
ρcrit,0

ρcrit,0 δ(a)⇒ δ′′(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′(a)− 3

2

Ωm,0 Geff(a, k)/GN

a5H(a)2/H2
0

δ(a) = 0 ,

i.e. Eq. (1.50)

A.4 Proof of Eq. (1.54)

The derivation of (1.54) can be easily shown by rewriting the equation for the growth rate
of perturbations as

f(a) ≡ dlnδ(a)

dlna
=

da

dlna

dlnδ(a)

da
⇒ f(a) =

δ′(a)

δ(a)
a . (A.43)

Hence the observation product fσ8(a) takes the form

fσ8(a) ≡ f(a) · σ(a) =
δ′(a)
H
HHδ(a)

a σ8

HHHδ(a)

δ(1)
⇒ fσ8(a) =

σ8

δ(1)
a δ′(a) ,

i.e. Eq. (1.54).
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Appendix B
Boltzmann Codes

As we shortly discussed in Section 2.5, in order to construct the CMB power spectrum,
one should take into consideration all the particle species and calculate how the perturbations
affect particle distributions by solving the Boltzmann equations, calculate the ratio ∆T/T and
expand in spherical harmonics. Fortunately, throughout the years some numerical codes have
been developed, such as the CMBFAST [611], the Davis Anisotropy Shortcut (DASh) [612], the
CMBEASY (an updated version of CMBFAST written in C++) [613], the Code for Anisotropies

in the Microwave Background (CAMB) [462] and the Cosmic Linear Anisotropy Solving

System (CLASS) [463, 464] that have the ability to solve the Boltzmann equations for a given
set of cosmological parameters and construct the predicted CMB and large scale structure
observables in the context of ΛCDM, as well as some default dark energy models (e.g. the
wCDM, the CPL etc.). Nowadays, the last two are kept up to date, with current cosmological
data and are by far the most widely used numerical packages for the construction of the power
spectrum.

Their increasing popularity over the years led to the development of appropriate patches
[such as the Modified Growth with CAMB (MGCAMB) [465–467] and the hi class [468, 469]
patches] in the aforementioned codes that solve the Boltzmann equations for a given set of
cosmological parameters and construct the predicted CMB and large scale structure observables
for different modified gravity theories. In this appendix we will briefly discuss some of these
packages and shortly elaborate their functionality.

B.1 (MG)CAMB/(MG)COSMOMC

The first numerical package that we discuss is CAMB [462]. Its latest version can be either
downloaded from its official github repository or by simply using the git clone command in
the terminal as indicated in the readme file. After the successful installation of the current
version of CAMB, one of the .ini files (e.g. the params.ini) that are inside the inifiles folder
can be used as the reference input file, in order to set specific values to the basic parameters
of the cosmological model in question. Then, this file is executed following the instructions of
the readme and the Cl’s of the corresponding CMB power spectrum are obtained.

The CAMB package, works in tandem with Cosmological MonteCarlo (COSMOMC), which
is a Markov Chain Monte Carlo (MCMC) engine for exploring cosmological parameter space
[462]. COSMOMC does accurate brute force theoretical matter power spectrum and Cl calculations
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B.1. (MG)CAMB/(MG)COSMOMC

utilizing CAMB. In particular, the code calls CAMB for each sampled point of the parameter space
and performs a simple Metropolis algorithm or an optimized fast-slow sampling method (ideal
for likelihoods with many nuisance parameters, such as the Planck likelihoods) MCMC over user
selected parameters. The latest version of COSMOMC may be downloaded either from the official
github repository or by using the git clone command in the terminal. After successfully
installing its current version, one needs to modify the test.ini file in order to include the
needed likelihoods, as well as the common.ini and the relevant .ini files inside the batch3

folder in order to set the priors of the parameter of the model in question.

The increasing popularity of this particular Boltzmann code, led to appropriate patches
that solve the Boltzmann equations for specific modified gravity models. Regarding CAMB,
the corresponding patch is the Modified Growth with CAMB (MGCAMB) [465–467]. Its latest
version can be downloaded from the official github repository or by simply using the git clone

command in the terminal, as indicated in the readme file. This patch works in the same way
as CAMB code but introduces phenomenological modification of growth along with dynamical
dark energy models. The corresponding parameters for the modified gravity models can be
specified in the params MG.ini file and this file is used along with the params.ini file to run
the code. Concerning COSMOMC, the corresponding patch is the MGCOSMOMC. The latest version
can downloaded either from the official github repository or by simply using the git clone

command in the terminal as usual.

For the reproduction of Fig. 2.15 we use the numerical package MGCAMB. After successfully
installing it, we modify the mgcamb.f90 file by adding in the relevant mu, gamma functions

the parametrization (2.10) as a separate case and then we generate different params CMB MG.ini

and params.ini files for each pair of (ga, n)1. For example for the pair (ga, n) = (0.5, 2), we
have created the file params MG ga05.ini which has the following settings:

(∗Part 1. Choose the Modified Growth flag ∗)(∗Part 1. Choose the Modified Growth flag ∗)(∗Part 1. Choose the Modified Growth flag ∗)
MG flag = 1MG flag = 1MG flag = 1

(∗Choose at which time to turn on MG ∗)(∗Choose at which time to turn on MG ∗)(∗Choose at which time to turn on MG ∗)
GRtrans = 0.001d0GRtrans = 0.001d0GRtrans = 0.001d0

(∗Part 2.1 - Pure MG models ∗)(∗Part 2.1 - Pure MG models ∗)(∗Part 2.1 - Pure MG models ∗)
pure MG flag = 1pure MG flag = 1pure MG flag = 1

(∗Part 2.2 - Alternative MG models ∗)(∗Part 2.2 - Alternative MG models ∗)(∗Part 2.2 - Alternative MG models ∗)
alt MG flag = 1alt MG flag = 1alt MG flag = 1

(∗Part 2.3 - QSA models ∗)(∗Part 2.3 - QSA models ∗)(∗Part 2.3 - QSA models ∗)
QSA flag = 4QSA flag = 4QSA flag = 4

(∗Part 3.1.1. - mu, gamma functions ∗)(∗Part 3.1.1. - mu, gamma functions ∗)(∗Part 3.1.1. - mu, gamma functions ∗)
mugamma par = 3mugamma par = 3mugamma par = 3

(∗Effective Newton’s Constant ∗)(∗Effective Newton’s Constant ∗)(∗Effective Newton’s Constant ∗)
ga = 0.5ga = 0.5ga = 0.5

nn = 2nn = 2nn = 2

1Actually, for this task we contacted the authors of the program and they created this separate branch for
us.
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(∗Part 3.1.2. - mu, Sigma functions ∗)(∗Part 3.1.2. - mu, Sigma functions ∗)(∗Part 3.1.2. - mu, Sigma functions ∗)
musigma par = 1musigma par = 1musigma par = 1

mu0 = −1mu0 = −1mu0 = −1

sigma0 = 0sigma0 = 0sigma0 = 0

(∗Part 3.1.3. - Q,R functions ∗)(∗Part 3.1.3. - Q,R functions ∗)(∗Part 3.1.3. - Q,R functions ∗)
QR par = 1QR par = 1QR par = 1

MGQfix = 1MGQfix = 1MGQfix = 1

MGRfix = 1MGRfix = 1MGRfix = 1

Qnot = 1.Qnot = 1.Qnot = 1.

Rnot = 1.Rnot = 1.Rnot = 1.

sss = 0sss = 0sss = 0

(∗Part 3.2.1 - Linder Gamma ∗)(∗Part 3.2.1 - Linder Gamma ∗)(∗Part 3.2.1 - Linder Gamma ∗)
Linder gamma = 0.545Linder gamma = 0.545Linder gamma = 0.545

(∗Part 3.3.1 - QSA f(R) model ∗)(∗Part 3.3.1 - QSA f(R) model ∗)(∗Part 3.3.1 - QSA f(R) model ∗)
B0 = 1.d− 3B0 = 1.d− 3B0 = 1.d− 3

(∗Part 3.3.2 - QSA Symmetron model ∗)(∗Part 3.3.2 - QSA Symmetron model ∗)(∗Part 3.3.2 - QSA Symmetron model ∗)
beta star = 1.0d0beta star = 1.0d0beta star = 1.0d0

a star = 0.5d0a star = 0.5d0a star = 0.5d0

xi star = 0.001d0xi star = 0.001d0xi star = 0.001d0

(∗Part 3.3.3 - QSA Dilaton model ∗)(∗Part 3.3.3 - QSA Dilaton model ∗)(∗Part 3.3.3 - QSA Dilaton model ∗)
beta0 = 1.d0beta0 = 1.d0beta0 = 1.d0

xi0 = 0.0001xi0 = 0.0001xi0 = 0.0001

DilS = 0.24d0DilS = 0.24d0DilS = 0.24d0

DilR = 1.d0DilR = 1.d0DilR = 1.d0

A2 = 1e3A2 = 1e3A2 = 1e3

(∗Part 3.3.4 - QSA Hu-Sawicki f(R) ∗)(∗Part 3.3.4 - QSA Hu-Sawicki f(R) ∗)(∗Part 3.3.4 - QSA Hu-Sawicki f(R) ∗)
F R0 = 0.0001d0F R0 = 0.0001d0F R0 = 0.0001d0

FRn = 1.d0FRn = 1.d0FRn = 1.d0

(∗Part 4. Parameters for the DE model ∗)(∗Part 4. Parameters for the DE model ∗)(∗Part 4. Parameters for the DE model ∗)
DE model = 0DE model = 0DE model = 0

w0DE = −1.d0w0DE = −1.d0w0DE = −1.d0

waDE = 0.d0waDE = 0.d0waDE = 0.d0

Obviously the majority of the parameters is set in the default values and are omitted by the
code since we focus on the mu, gamma functions loop. Similarly, we construct the rest of the
files for the corresponding (ga, n) pairs. Then, these files are used by params.ini and utilizing
the gnuplot program we construct Fig. 2.15.
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B.2 CLASS/MontePython

Another Boltzmann code that is widely used in the literature is the CLASS [463,464] numerical
package. A basic advantage of CLASS over other similar programs, is that it is written in C++
with a very modular documentation. Furthermore, CLASS is a compartmentalized program so it
is relatively easy to modify. Its latest version can be installed from the official github repository
of the numerical package. The reference input file for this program is the explanatory.ini

file that contains all possible input parameters as well as detailed comments. The package (as
well as CAMB) has by default implemented some basic dark energy models as well the standard
ΛCDM scenario. More specifically, in the section “Dark energy contributions” three models
are implemented by default. These are the following:

• ΛCDM corresponding to Omega Lambda.

• CPL corresponding to Omega fld.

• Scalar Field corresponding to Omega scf that solves the Klein Gordon equation for a
scalar field.

If the user needs to run the code for one of the aforementioned models, he needs to fix the values
of the two out of the three parameters to zero and leave the third one undefined. For example,
if the user wants to use the standard ΛCDM scenario, then he should set Omega scf=0 (in order
to avoid any contribution from the scalar field), Omega fld=0 and leave the Omega Lambda to
be unspecified. Similarly, if one wants to study the CPL case, then, he should comment the
Omega fld and set the other two equal to zero.

The CLASS numerical package works in tandem with MontePython (similar to CAMB with

COSMOMC) which is a MCMC engine used for parameter inference and includes various methods
to explore parameter space, such as a Metropolis-Hastings sampling method, a Nested Sampling
method etc. (see Ref. [546] for more details). The latest version of the program can be
downloaded from the official github repository. After successfully installing it, the user needs
to create a .param file following the example files inside the input folder. In the constructed
.param file the likelihoods as well as the priors of the parameter of the cosmological model in
question are specified.

In Chapter 5 we utilized the CLASS/MontePython programs for the transition models LwMT
and LMT . For this purpose, we modified the CPL case in CLASS and then run the programs as
usual. Regarding the modifications, we firstly calculated the equation of state parameter w(a),
its derivative with respect to the scale factor a as well as the following integral

fDE ≡ −3

∫ a

1

1 + w(a′)

a′
da′

and rewrote the derived forms in C format. Then, the calculated forms were substituted in the
CPL case in the background.c file that is located inside the source folder. More specifically,
the functions *w fld, *dw over da fld as well as the *integral fld were modified and then,
in the input.c file, the default values of the extra parameters of the transition models inside the
/** - background structure */ were defined. Finally, we determined in the background.h

file, that is located in the include folder, the type of the variables of the transition models
inside the struct background loop2.

2For more detailed instructions concerning the modifications visit our website page.
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B.3 emcee

Another open source program that is widely used in the literature is the publicly available
emcee. This is a Python implementation program that, in contrast to COSMOMC or MontePython,
is not directly connected with applications to problems in cosmology. In essence, as all MCMC
samplers, is aimed to simulate the posterior distribution of the given problem at hand, but now
based on an affine-invariant ensemble scheme, first introduced in Ref. [614]. In this scheme, the
user starts by defining the number of walkers, i.e. the numbers of the members of the ensemble,
that scan the parametric space in the prior ranges that the user has chosen to vary over.

After defining the prior ranges for the parameters and the likelihood function of the cos-
mological model in question, each walker starts searching the parametric space and move to a
candidate point based on his relation with the other walkers. If the new position provides a
higher proposal probability function than the previous one, then the walker accepts the new
proposal. If not, the new proposed point is rejected with a given probability. In the end,
the ensemble of walkers will cover the parameter space of interest, and within it the optimum
region where the model describes better the observations is identified. A more detailed anal-
ysis regarding the emcee program is beyond the scope of the current thesis but the reader, if
interested, can see Ref. [615] for more details.
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Appendix C
Chapter 2 Calculations

In this appendix we present the proof of Eq. (2.26) and shortly discuss the basic algorithms
that were used for the statistical analysis and the construction of the figures of Chapter 2. For
a more extensive analysis regarding the code, visit the “Growth-Tomography � repository.”

C.1 Proof of Eq. (2.26)

The derivation of (2.26) is straightforward. We calculate each term of (2.26) separately as
follows

df

dlna
= δ′′

a2

δ(a)
+ a

δ′(a)

δ(a)
− a2 [δ′(a)]2

δ2(a)
, (C.1)

f 2 = a2 [δ′(a)]2

δ2(a)
, (C.2)

dlnΩm

dlna
= −3− 2a

H ′(a)

H(a)
, (C.3)

1

2

(
1− dlnΩm

dlna

)
f =

f

2
− f

2

dlnΩm

dlna
= a

δ′(a)

2δ(a)
+

3

2
a
δ′(a)

δ(a)
+ a2 δ

′(a)H ′(a)

δ(a)H(a)
, (C.4)

3

2

Geff

GN

Ωm =
3

2

Geff

GN

Ωm,0 a
−3H2

0

H2(a)
. (C.5)

Therefore, adding the terms (C.1)-(C.5), we easily obtain

df

d ln a
+ f 2 +

1

2

(
1− d ln Ωm

d ln a

)
f =

3

2

Geff

GN

Ωm ⇒ δ′′
a2

δ(a)
+ a

δ′(a)

δ(a)
−
HH

HHHH
a2 [δ′(a)]2

δ2(a)
+
HH

HHHH
a2 [δ′(a)]2

δ2(a)
+

+a
δ′(a)

2δ(a)
+

3

2
a
δ′(a)

δ(a)
+ a2 δ

′(a)H ′(a)

δ(a)H(a)
=

3

2

Geff

GN

Ωm,0 a
−3H2

0

H2(a)
⇒ δ′′

a2

δ(a)
+ 3a

δ′(a)

δ(a)
+ a2 δ

′(a)H ′(a)

δ(a)H(a)

=
3

2

Geff

GN

Ωm,0 a
−3H2

0

H2(a)

×δ(a)/a2

=====⇒ δ′′(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′(a)− 3

2

Ωm,0 Geff(a, k)/GN

a5H2(a)/H2
0

δ(a) = 0 ,

i.e. Eq. (1.50).
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C.2 Reproduction of Fig. 2.2

As a first step we need to import the growth compilation presented in Table 2.1 which we
have in a txt file entitled Growth tableII. Moreover we import the subcovariance matrix of
the WiggleZ survey (2.21) which also in a txt file entitled Cij WiggleZ. Furthermore, for the
reproduction of Fig. 2.2, we need Eqs. (1.50), (2.10) in order to construct the theoretical forms
of (1.54). This is demonstrated in the following Mathematica code:

datag = Import[“.\\data\\Growth tableII.txt”, “Table”];datag = Import[“.\\data\\Growth tableII.txt”, “Table”];datag = Import[“.\\data\\Growth tableII.txt”, “Table”];

Cijwigglez = Import[“.\\data\\Cij WiggleZ.txt”, “Table”];Cijwigglez = Import[“.\\data\\Cij WiggleZ.txt”, “Table”];Cijwigglez = Import[“.\\data\\Cij WiggleZ.txt”, “Table”];

δ[a ,w ,Ω ]:=aHypergeometric2F1

[
1

−3w
,
1

2
− 1

2w
, 1− 5

6w
, a−3w

(
1− 1

Ω

)]
δ[a ,w ,Ω ]:=aHypergeometric2F1

[
1

−3w
,
1

2
− 1

2w
, 1− 5

6w
, a−3w

(
1− 1

Ω

)]
δ[a ,w ,Ω ]:=aHypergeometric2F1

[
1

−3w
,
1

2
− 1

2w
, 1− 5

6w
, a−3w

(
1− 1

Ω

)]
fwCDM[a ,w ,Ω ]:=aD[Log[δ[aa, w,Ω]], aa]/.aa→ afwCDM[a ,w ,Ω ]:=aD[Log[δ[aa, w,Ω]], aa]/.aa→ afwCDM[a ,w ,Ω ]:=aD[Log[δ[aa, w,Ω]], aa]/.aa→ a

fσ8wCDM[a ,w ,Ω , σ8 ]:=fwCDM[a, w,Ω]σ8
δ[a, w,Ω]

δ[1, w,Ω]
fσ8wCDM[a ,w ,Ω , σ8 ]:=fwCDM[a, w,Ω]σ8

δ[a, w,Ω]

δ[1, w,Ω]
fσ8wCDM[a ,w ,Ω , σ8 ]:=fwCDM[a, w,Ω]σ8

δ[a, w,Ω]

δ[1, w,Ω]

(∗The wCDM Form of Background ∗)(∗The wCDM Form of Background ∗)(∗The wCDM Form of Background ∗)

H[a ,w , om ]:=
√

oma−3 + (1− om)a−3(1+w)H[a ,w , om ]:=
√

oma−3 + (1− om)a−3(1+w)H[a ,w , om ]:=
√

oma−3 + (1− om)a−3(1+w)

(∗Analytic Form for the Luminosity Distance ∗)(∗Analytic Form for the Luminosity Distance ∗)(∗Analytic Form for the Luminosity Distance ∗)

dLh[a , om ,w ]:=
2

a
√

om

(
Hypergeometric2F1

[
1/2,

−1

6w
, 1− 1

6w
, 1− 1/om

]
−dLh[a , om ,w ]:=

2

a
√

om

(
Hypergeometric2F1

[
1/2,

−1

6w
, 1− 1

6w
, 1− 1/om

]
−dLh[a , om ,w ]:=

2

a
√

om

(
Hypergeometric2F1

[
1/2,

−1

6w
, 1− 1

6w
, 1− 1/om

]
−

−
√
aHypergeometric2F1

[
1/2,

−1

6w
, 1− 1

6w
, (1− 1/om)a−3w

])√
aHypergeometric2F1

[
1/2,

−1

6w
, 1− 1

6w
, (1− 1/om)a−3w

])√
aHypergeometric2F1

[
1/2,

−1

6w
, 1− 1

6w
, (1− 1/om)a−3w

])
amin = 0.001;amin = 0.001;amin = 0.001;

(∗The Phenomenological Parametrization (2.10) ∗)(∗The Phenomenological Parametrization (2.10) ∗)(∗The Phenomenological Parametrization (2.10) ∗)
Geff[a , ga , n ]:=1 + ga(1− a)n − ga(1− a)2n;Geff[a , ga , n ]:=1 + ga(1− a)n − ga(1− a)2n;Geff[a , ga , n ]:=1 + ga(1− a)n − ga(1− a)2n;

dsol[om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ]:=dsol[om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ]:=dsol[om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ]:=(
dsol[om, w, ga, n] = Module

[
{a},NDSolve

[{
−
(

3omd[a]Geff[a, ga, n]

(2a5 H[a, w, om]2)

)
+ d′[a]

(
dsol[om, w, ga, n] = Module

[
{a},NDSolve

[{
−
(

3omd[a]Geff[a, ga, n]

(2a5 H[a, w, om]2)

)
+ d′[a]

(
dsol[om, w, ga, n] = Module

[
{a},NDSolve

[{
−
(

3omd[a]Geff[a, ga, n]

(2a5 H[a, w, om]2)

)
+ d′[a]

+

(
3

a
+
D[H[a, w, om], a]

H[a, w, om]

)
+ d′′[a] == 0, d[amin]==amin, d′[amin] == 1

}
, d, {a, amin, 1}

](
3

a
+
D[H[a, w, om], a]

H[a, w, om]

)
+ d′′[a] == 0, d[amin]==amin, d′[amin] == 1

}
, d, {a, amin, 1}

](
3

a
+
D[H[a, w, om], a]

H[a, w, om]

)
+ d′′[a] == 0, d[amin]==amin, d′[amin] == 1

}
, d, {a, amin, 1}

]
[[1]]])[[1]]])[[1]]])

(∗The growth rate and fσ8 ∗)(∗The growth rate and fσ8 ∗)(∗The growth rate and fσ8 ∗)
Da[a , om ,w , ga , n ]:=d[a]/.dsol[om, w, ga, n]Da[a , om ,w , ga , n ]:=d[a]/.dsol[om, w, ga, n]Da[a , om ,w , ga , n ]:=d[a]/.dsol[om, w, ga, n]

fa[aa , om ,w , ga , n ]:=ad′[a]/d[a]/.a→ aa/.dsol[om, w, ga, n]fa[aa , om ,w , ga , n ]:=ad′[a]/d[a]/.a→ aa/.dsol[om, w, ga, n]fa[aa , om ,w , ga , n ]:=ad′[a]/d[a]/.a→ aa/.dsol[om, w, ga, n]

fσ8geff [a ?NumberQ, om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ, σ8 ?Numbe-fσ8geff [a ?NumberQ, om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ, σ8 ?Numbe-fσ8geff [a ?NumberQ, om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ, σ8 ?Numbe-

Q]:=
σ8Da[aa, om, w, ga, n]

Da[1, om, w, ga, n]
fa[aa, om, w, ga, n]/.aa→ aQ]:=

σ8Da[aa, om, w, ga, n]

Da[1, om, w, ga, n]
fa[aa, om, w, ga, n]/.aa→ aQ]:=

σ8Da[aa, om, w, ga, n]

Da[1, om, w, ga, n]
fa[aa, om, w, ga, n]/.aa→ a

fσ8z[z ?NumberQ, om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ, σ8 ?NumberQ]fσ8z[z ?NumberQ, om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ, σ8 ?NumberQ]fσ8z[z ?NumberQ, om ?NumberQ,w ?NumberQ, ga ?NumberQ, n ?NumberQ, σ8 ?NumberQ]
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:=
σ8Da[aa, om, w, ga, n]

Da[1, om, w, ga, n]
fa[aa, om, w, ga, n]/.aa→ 1

1 + z
:=
σ8Da[aa, om, w, ga, n]

Da[1, om, w, ga, n]
fa[aa, om, w, ga, n]/.aa→ 1

1 + z
:=
σ8Da[aa, om, w, ga, n]

Da[1, om, w, ga, n]
fa[aa, om, w, ga, n]/.aa→ 1

1 + z

(∗Full Dataset ∗)(∗Full Dataset ∗)(∗Full Dataset ∗)
datag1 = Table[{datag[[i, 1]], datag[[i, 2]], datag[[i, 3]]}, {i, 1,Length[datag]}];datag1 = Table[{datag[[i, 1]], datag[[i, 2]], datag[[i, 3]]}, {i, 1,Length[datag]}];datag1 = Table[{datag[[i, 1]], datag[[i, 2]], datag[[i, 3]]}, {i, 1,Length[datag]}];
pldatag = ErrorListPlot [datag1,Frame→ True,FrameLabel→ {z, "fσ8(z)",pldatag = ErrorListPlot [datag1,Frame→ True,FrameLabel→ {z, "fσ8(z)",pldatag = ErrorListPlot [datag1,Frame→ True,FrameLabel→ {z, "fσ8(z)",

BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Blue}] ;BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Blue}] ;BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Blue}] ;

(∗ 20 Early Data ∗)(∗ 20 Early Data ∗)(∗ 20 Early Data ∗)
datagearly = Take[datag, 20];datagearly = Take[datag, 20];datagearly = Take[datag, 20];

datag1early = Table[{datagearly[[i, 1]], datagearly[[i, 2]], datagearly[[i, 3]]},datag1early = Table[{datagearly[[i, 1]], datagearly[[i, 2]], datagearly[[i, 3]]},datag1early = Table[{datagearly[[i, 1]], datagearly[[i, 2]], datagearly[[i, 3]]},
{i, 1,Length[datagearly]}];{i, 1,Length[datagearly]}];{i, 1,Length[datagearly]}];
pldatagearly = ErrorListPlot [datag1early,Frame→ True,FrameLabel→ {z, "fσ8(z)"} ,pldatagearly = ErrorListPlot [datag1early,Frame→ True,FrameLabel→ {z, "fσ8(z)"} ,pldatagearly = ErrorListPlot [datag1early,Frame→ True,FrameLabel→ {z, "fσ8(z)"} ,
BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Red}] ;BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Red}] ;BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Red}] ;

(∗ 20 Late Data ∗)(∗ 20 Late Data ∗)(∗ 20 Late Data ∗)
dataglate = Take[datag,−20];dataglate = Take[datag,−20];dataglate = Take[datag,−20];

datag1late = Table[{dataglate[[i, 1]], dataglate[[i, 2]], dataglate[[i, 3]]}, {i,Length[dataglate]}];datag1late = Table[{dataglate[[i, 1]], dataglate[[i, 2]], dataglate[[i, 3]]}, {i,Length[dataglate]}];datag1late = Table[{dataglate[[i, 1]], dataglate[[i, 2]], dataglate[[i, 3]]}, {i,Length[dataglate]}];
pldataglate = ErrorListPlot [datag1late,Frame→ True,FrameLabel→ {z, "fσ8(z)"} ,pldataglate = ErrorListPlot [datag1late,Frame→ True,FrameLabel→ {z, "fσ8(z)"} ,pldataglate = ErrorListPlot [datag1late,Frame→ True,FrameLabel→ {z, "fσ8(z)"} ,
BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Orange}]BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Orange}]BaseStyle→ FontSize→ 16,PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Orange}]

The commands pldatag, pldatagearly and pldataglate plot the full, the 20 earliest and the
20 latest RSD datapoints respectively. So, using the command fσ8z we can plot all the dashed
lines of Fig. 2.2.

C.3 Maximum Likelihood Method for Growth Data

For the construction of (2.18) we need to define the vector V i (2.19) as well as the correction

factor q
(
z,Ωm,0,Ω

fidi
m,0

)
denoted as ratio. Then, using the vector we construct the χ2 function

denoted as chi2corr

(∗ Support term for the Covariance Matrix of the WiggleZ Survey ∗)(∗ Support term for the Covariance Matrix of the WiggleZ Survey ∗)(∗ Support term for the Covariance Matrix of the WiggleZ Survey ∗)
Wigglez = {10, 11, 12};Wigglez = {10, 11, 12};Wigglez = {10, 11, 12};
Cijfs8 = DiagonalMatrix[datag[[All, 3]]∧2];Cijfs8 = DiagonalMatrix[datag[[All, 3]]∧2];Cijfs8 = DiagonalMatrix[datag[[All, 3]]∧2];

Cijfs8[[Wigglez,Wigglez]] = Cijwigglez;Cijfs8[[Wigglez,Wigglez]] = Cijwigglez;Cijfs8[[Wigglez,Wigglez]] = Cijwigglez;

InvCijfs8 = Inverse[Cijfs8];InvCijfs8 = Inverse[Cijfs8];InvCijfs8 = Inverse[Cijfs8];

(∗Corrections due to the Fiducial Cosmology ∗)(∗Corrections due to the Fiducial Cosmology ∗)(∗Corrections due to the Fiducial Cosmology ∗)

ratio1[z ,w , om , omfid ]:=

(
H[a, w, om]dLh[a, om, w]

H[a,−1, omfid]dLh[a, omfid,−1]

)
∧(−1)/.a→ 1

1 + z
;ratio1[z ,w , om , omfid ]:=

(
H[a, w, om]dLh[a, om, w]

H[a,−1, omfid]dLh[a, omfid,−1]

)
∧(−1)/.a→ 1

1 + z
;ratio1[z ,w , om , omfid ]:=

(
H[a, w, om]dLh[a, om, w]

H[a,−1, omfid]dLh[a, omfid,−1]

)
∧(−1)/.a→ 1

1 + z
;

ratio2[z ,w , om , omfid ]:=1;ratio2[z ,w , om , omfid ]:=1;ratio2[z ,w , om , omfid ]:=1;

vecgr[data ,w , om , ga , n , σ8 ]:=Table [data[[i, 2]]− ratio1[data[[i, 1]], w, om, data[[i, 4]]]vecgr[data ,w , om , ga , n , σ8 ]:=Table [data[[i, 2]]− ratio1[data[[i, 1]], w, om, data[[i, 4]]]vecgr[data ,w , om , ga , n , σ8 ]:=Table [data[[i, 2]]− ratio1[data[[i, 1]], w, om, data[[i, 4]]]
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fσ8geff

[
1

1 + data[[i, 1]]
, om, w, ga, n, σ8

]
, {i, 1,Length[data]}

]
fσ8geff

[
1

1 + data[[i, 1]]
, om, w, ga, n, σ8

]
, {i, 1,Length[data]}

]
fσ8geff

[
1

1 + data[[i, 1]]
, om, w, ga, n, σ8

]
, {i, 1,Length[data]}

]
(∗The χ2 Function (2.18) ∗)(∗The χ2 Function (2.18) ∗)(∗The χ2 Function (2.18) ∗)
chi2corr[data ,w , om , ga , n , σ8 ]:=vecgr [data, w, om, ga, n, σ8].InvCijfs8.vecgr[data, w, om,chi2corr[data ,w , om , ga , n , σ8 ]:=vecgr [data, w, om, ga, n, σ8].InvCijfs8.vecgr[data, w, om,chi2corr[data ,w , om , ga , n , σ8 ]:=vecgr [data, w, om, ga, n, σ8].InvCijfs8.vecgr[data, w, om,

ga,n,σ8]ga,n,σ8]ga,n,σ8]

Afterwards it is straightforward to apply the maximum likelihood method using the command
FindMinimum and calculate the best fit values of the various parameters as follows

(∗Minimization with respect to the Parameters Ωm,0 and σ8 ∗)(∗Minimization with respect to the Parameters Ωm,0 and σ8 ∗)(∗Minimization with respect to the Parameters Ωm,0 and σ8 ∗)
mnoms8 = FindMinimum[chi2corr[datag,−1, om, 0, 1, σ8], {om, .3, .31}, {σ8, .8, .81}]mnoms8 = FindMinimum[chi2corr[datag,−1, om, 0, 1, σ8], {om, .3, .31}, {σ8, .8, .81}]mnoms8 = FindMinimum[chi2corr[datag,−1, om, 0, 1, σ8], {om, .3, .31}, {σ8, .8, .81}]
(∗Minimization with respect to the Parameters w and Ωm,0 ∗)(∗Minimization with respect to the Parameters w and Ωm,0 ∗)(∗Minimization with respect to the Parameters w and Ωm,0 ∗)
mnomw = FindMinimum[chi2corr[datag, w, om, 0, 1, σ8pl], {w,−1,−1.1}, {om, .3, .31}]mnomw = FindMinimum[chi2corr[datag, w, om, 0, 1, σ8pl], {w,−1,−1.1}, {om, .3, .31}]mnomw = FindMinimum[chi2corr[datag, w, om, 0, 1, σ8pl], {w,−1,−1.1}, {om, .3, .31}]
(∗Minimization with respect to the Parameters w and σ8 ∗)(∗Minimization with respect to the Parameters w and σ8 ∗)(∗Minimization with respect to the Parameters w and σ8 ∗)
mnws8 = FindMinimum[chi2corr[datag, w, ompl, 0, 1, σ8], {w,−1,−1.1}, {σ8, .8, .81}]mnws8 = FindMinimum[chi2corr[datag, w, ompl, 0, 1, σ8], {w,−1,−1.1}, {σ8, .8, .81}]mnws8 = FindMinimum[chi2corr[datag, w, ompl, 0, 1, σ8], {w,−1,−1.1}, {σ8, .8, .81}]

C.4 Reproduction of Fig. 2.5

For the repoduction of the 1σ− 4σ confidence contours in the parametric space (Ωm,0 − σ8)
for ga = 0, we need to use the command ContourPlot and construct the corresponding contours.
For example, for the left panel of Fig. 2.5, we use the following Mathematica commands:

(∗Convert the ∆χ2 in σ Differences ∗)(∗Convert the ∆χ2 in σ Differences ∗)(∗Convert the ∆χ2 in σ Differences ∗)

dchi[nsig ,M ]:=2InverseGammaRegularized

[
M

2
, 1− Erf

[
nsig√

2

]]
//Ndchi[nsig ,M ]:=2InverseGammaRegularized

[
M

2
, 1− Erf

[
nsig√

2

]]
//Ndchi[nsig ,M ]:=2InverseGammaRegularized

[
M

2
, 1− Erf

[
nsig√

2

]]
//N

cont1s4soms8full = ContourPlot[chi2corr[datag,−1, om, 0, 1, σ8], {om, 0.05, 0.7}, {σ8, 0.6, 1.3},cont1s4soms8full = ContourPlot[chi2corr[datag,−1, om, 0, 1, σ8], {om, 0.05, 0.7}, {σ8, 0.6, 1.3},cont1s4soms8full = ContourPlot[chi2corr[datag,−1, om, 0, 1, σ8], {om, 0.05, 0.7}, {σ8, 0.6, 1.3},
Contours→ {mnoms8[[1]] + dchi[1, 2],mnoms8[[1]] + dchi[2, 2],mnoms8[[1]] + dchi[3, 2],Contours→ {mnoms8[[1]] + dchi[1, 2],mnoms8[[1]] + dchi[2, 2],mnoms8[[1]] + dchi[3, 2],Contours→ {mnoms8[[1]] + dchi[1, 2],mnoms8[[1]] + dchi[2, 2],mnoms8[[1]] + dchi[3, 2],

mnoms8[[1]] + dchi[4, 2]},ContourShading→ {Hue[0.6, .9, .9],Hue[0.6, .77, .9],Hue[0.6, .55, .9],mnoms8[[1]] + dchi[4, 2]},ContourShading→ {Hue[0.6, .9, .9],Hue[0.6, .77, .9],Hue[0.6, .55, .9],mnoms8[[1]] + dchi[4, 2]},ContourShading→ {Hue[0.6, .9, .9],Hue[0.6, .77, .9],Hue[0.6, .55, .9],

Hue[0.6, .1, .9],White},ContourStyle→ {Hue[0.6, .9, .9],Hue[0.6, .77, .9],Hue[0.6, .55, .9],Hue[0.6, .1, .9],White},ContourStyle→ {Hue[0.6, .9, .9],Hue[0.6, .77, .9],Hue[0.6, .55, .9],Hue[0.6, .1, .9],White},ContourStyle→ {Hue[0.6, .9, .9],Hue[0.6, .77, .9],Hue[0.6, .55, .9],

,Hue[0.6, .1, .9],White}],Hue[0.6, .1, .9],White}],Hue[0.6, .1, .9],White}]

Notice that we used the function dchi which converts the χ2 functions in σ differences for the
number of free parameters M . With similar commands one can construct the middle and right
panel of Fig. 2.5, as well as Figs. 2.6 and 2.8.

C.5 Reproduction of Fig. 2.9

For the reproduction of Fig. 2.9 we need the DateListPlot command which plots points
with values as sequence of dates. The use of this command is illustrated below:
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C.6. Reproduction of Fig. 2.12

(∗Error Bar Evolution with Time ∗)(∗Error Bar Evolution with Time ∗)(∗Error Bar Evolution with Time ∗)
errortab = Table[datag[[i, 3]], {i, 1,Length[datag]}];errortab = Table[datag[[i, 3]], {i, 1,Length[datag]}];errortab = Table[datag[[i, 3]], {i, 1,Length[datag]}];
Mean[Take[errortab, 20]];Mean[Take[errortab, 20]];Mean[Take[errortab, 20]];

Mean[Take[errortab,−20]];Mean[Take[errortab,−20]];Mean[Take[errortab,−20]];

fig9a = DateListPlot [MovingAverage[errortab, 20], {{2013, 1, 1}, {2018, 1, 1}},Frame→ True,fig9a = DateListPlot [MovingAverage[errortab, 20], {{2013, 1, 1}, {2018, 1, 1}},Frame→ True,fig9a = DateListPlot [MovingAverage[errortab, 20], {{2013, 1, 1}, {2018, 1, 1}},Frame→ True,

FrameLabel→ {“Time of Publication”, "20 Pts Moving Average of fσ8 Error Bars"} ,FrameLabel→ {“Time of Publication”, "20 Pts Moving Average of fσ8 Error Bars"} ,FrameLabel→ {“Time of Publication”, "20 Pts Moving Average of fσ8 Error Bars"} ,
BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],PlotRange→ All,BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],PlotRange→ All,BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],PlotRange→ All,

PlotStyle→ {PointSize→ Large,Blue}, Joined→ False,Axes→ True, ImageSize→ Large];PlotStyle→ {PointSize→ Large,Blue}, Joined→ False,Axes→ True, ImageSize→ Large];PlotStyle→ {PointSize→ Large,Blue}, Joined→ False,Axes→ True, ImageSize→ Large];

(∗Redshift Evolution with Time ∗)(∗Redshift Evolution with Time ∗)(∗Redshift Evolution with Time ∗)
redshtab = Table[datag[[i, 1]], {i, 1,Length[datag]}];redshtab = Table[datag[[i, 1]], {i, 1,Length[datag]}];redshtab = Table[datag[[i, 1]], {i, 1,Length[datag]}];
Mean[Take[redshtab, 20]];Mean[Take[redshtab, 20]];Mean[Take[redshtab, 20]];

Mean[Take[redshtab,−20]];Mean[Take[redshtab,−20]];Mean[Take[redshtab,−20]];

fig9b = DateListPlot [MovingAverage[redshtab, 20], {{2013, 1, 1}, {2018, 1, 1}},Frame→ True,fig9b = DateListPlot [MovingAverage[redshtab, 20], {{2013, 1, 1}, {2018, 1, 1}},Frame→ True,fig9b = DateListPlot [MovingAverage[redshtab, 20], {{2013, 1, 1}, {2018, 1, 1}},Frame→ True,

FrameLabel→ {“Time of Publication”, "20 Pts Moving Average of fσ8 Redshift"} ,FrameLabel→ {“Time of Publication”, "20 Pts Moving Average of fσ8 Redshift"} ,FrameLabel→ {“Time of Publication”, "20 Pts Moving Average of fσ8 Redshift"} ,
BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],

PlotRange→ {All, {0.3, 0.8}},PlotRange→ All,PlotStyle→ {PointSize→ Large,Blue}];PlotRange→ {All, {0.3, 0.8}},PlotRange→ All,PlotStyle→ {PointSize→ Large,Blue}];PlotRange→ {All, {0.3, 0.8}},PlotRange→ All,PlotStyle→ {PointSize→ Large,Blue}];
fig8 = GraphicsGrid[{{fig9a, fig9b}}, Spacings→ 0, ImageSize→ 1300];fig8 = GraphicsGrid[{{fig9a, fig9b}}, Spacings→ 0, ImageSize→ 1300];fig8 = GraphicsGrid[{{fig9a, fig9b}}, Spacings→ 0, ImageSize→ 1300];

The fig9a corresponds to the left panel of Fig. 2.9, while fig9b corresponds to the right panel.

C.6 Reproduction of Fig. 2.12

For the reproduction of Fig. 2.12 we need to plot the best fit value of the parameter ga
along with its 1σ range for 20 point growth subsamples starting from the earliest to the latest
subsample. As a first step we define an empty list which is denoted as gtab and apply the
maximum likelihood method on each subsample appending the results on gtab. This is done
using the following Do loop:

gtab = {};gtab = {};gtab = {};
Do[Do[Do[

datagen = Take[datag, {j, 19 + j}];datagen = Take[datag, {j, 19 + j}];datagen = Take[datag, {j, 19 + j}];
If[j ≥ 11,If[j ≥ 11,If[j ≥ 11,

Cijfs8 = DiagonalMatrix[datagen[[All, 3]]∧2],Cijfs8 = DiagonalMatrix[datagen[[All, 3]]∧2],Cijfs8 = DiagonalMatrix[datagen[[All, 3]]∧2],

Wigglez = {10 + 1− j, 11 + 1− j, 12 + 1− j};Wigglez = {10 + 1− j, 11 + 1− j, 12 + 1− j};Wigglez = {10 + 1− j, 11 + 1− j, 12 + 1− j};
Cijfs8 = DiagonalMatrix[datagen[[All, 3]]∧2];Cijfs8 = DiagonalMatrix[datagen[[All, 3]]∧2];Cijfs8 = DiagonalMatrix[datagen[[All, 3]]∧2];

Cijfs8[[Wigglez,Wigglez]] = Cijwigglez];Cijfs8[[Wigglez,Wigglez]] = Cijwigglez];Cijfs8[[Wigglez,Wigglez]] = Cijwigglez];

InvCijfs8 = Inverse[Cijfs8];InvCijfs8 = Inverse[Cijfs8];InvCijfs8 = Inverse[Cijfs8];

mnga = FindMinimum[chi2corr[datagen,−1, ompl, ga, 2, σ8pl], {ga, 0,−0.1}];mnga = FindMinimum[chi2corr[datagen,−1, ompl, ga, 2, σ8pl], {ga, 0,−0.1}];mnga = FindMinimum[chi2corr[datagen,−1, ompl, ga, 2, σ8pl], {ga, 0,−0.1}];
gabf = mnga[[2, 1, 2]];gabf = mnga[[2, 1, 2]];gabf = mnga[[2, 1, 2]];
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chimnga = mnga[[1]];chimnga = mnga[[1]];chimnga = mnga[[1]];

dga2 = FindRoot[chi2corr[datagen,−1, ompl, ga, 2, σ8pl] == chimnga + 1, {ga, gabf + 0.5}]dga2 = FindRoot[chi2corr[datagen,−1, ompl, ga, 2, σ8pl] == chimnga + 1, {ga, gabf + 0.5}]dga2 = FindRoot[chi2corr[datagen,−1, ompl, ga, 2, σ8pl] == chimnga + 1, {ga, gabf + 0.5}]
[[1, 2]]− gabf;[[1, 2]]− gabf;[[1, 2]]− gabf;

dga1 = FindRoot[chi2corr[datagen,−1, ompl, ga, 2, σ8pl] == chimnga + 1, {ga, gabf− 0.5}]dga1 = FindRoot[chi2corr[datagen,−1, ompl, ga, 2, σ8pl] == chimnga + 1, {ga, gabf− 0.5}]dga1 = FindRoot[chi2corr[datagen,−1, ompl, ga, 2, σ8pl] == chimnga + 1, {ga, gabf− 0.5}]
[[1, 2]]− gabf;[[1, 2]]− gabf;[[1, 2]]− gabf;

AppendTo[gtab, {gabf, dga1, dga2}], {j, 1,Length[datag]− 19}];AppendTo[gtab, {gabf, dga1, dga2}], {j, 1,Length[datag]− 19}];AppendTo[gtab, {gabf, dga1, dga2}], {j, 1,Length[datag]− 19}];

Then after the following list arrangements, the plot that shows the evolution of the best fit of
ga with time is publication is easily constructed:

gtaberr = Table[{{i, gtab[[i, 1]]},ErrorBar[{gtab[[i, 2]], gtab[[i, 3]]}]}, {i, 1,Length[gtab]}];gtaberr = Table[{{i, gtab[[i, 1]]},ErrorBar[{gtab[[i, 2]], gtab[[i, 3]]}]}, {i, 1,Length[gtab]}];gtaberr = Table[{{i, gtab[[i, 1]]},ErrorBar[{gtab[[i, 2]], gtab[[i, 3]]}]}, {i, 1,Length[gtab]}];
d1 = First/@gtaberr; d4 = Table[i, {i, 2013, 2018, 0.114}];d1 = First/@gtaberr; d4 = Table[i, {i, 2013, 2018, 0.114}];d1 = First/@gtaberr; d4 = Table[i, {i, 2013, 2018, 0.114}];
d6 = Last/@gtaberr; d5 = Last/@d1;d6 = Last/@gtaberr; d5 = Last/@d1;d6 = Last/@gtaberr; d5 = Last/@d1;

d7 = Transpose[{d4, d5}]; d8 = Transpose[{d7, d6}];d7 = Transpose[{d4, d5}]; d8 = Transpose[{d7, d6}];d7 = Transpose[{d4, d5}]; d8 = Transpose[{d7, d6}];
figgaerrorplot = ErrorListPlot [d8,PlotRange→ {All, {−1.7, 0.2}},Frame→ True,figgaerrorplot = ErrorListPlot [d8,PlotRange→ {All, {−1.7, 0.2}},Frame→ True,figgaerrorplot = ErrorListPlot [d8,PlotRange→ {All, {−1.7, 0.2}},Frame→ True,

PlotStyle→ Blue,FrameLabel→ {“Time of Publication”, "ga"} ,PlotStyle→ Blue,FrameLabel→ {“Time of Publication”, "ga"} ,PlotStyle→ Blue,FrameLabel→ {“Time of Publication”, "ga"} ,
BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],BaseStyle→ {FontFamily→ “Times”, 18},FrameStyle→ Directive[Black],

PlotStyle→ {PointSize→ Large,Blue}, ImageSize→ Large];PlotStyle→ {PointSize→ Large,Blue}, ImageSize→ Large];PlotStyle→ {PointSize→ Large,Blue}, ImageSize→ Large];

Wigglez = {10, 11, 12};Wigglez = {10, 11, 12};Wigglez = {10, 11, 12};
Cijfs8 = DiagonalMatrix[datag[[All, 3]]∧2];Cijfs8 = DiagonalMatrix[datag[[All, 3]]∧2];Cijfs8 = DiagonalMatrix[datag[[All, 3]]∧2];

Cijfs8[[Wigglez,Wigglez]] = Cijwigglez;Cijfs8[[Wigglez,Wigglez]] = Cijwigglez;Cijfs8[[Wigglez,Wigglez]] = Cijwigglez;

InvCijfs8 = Inverse[Cijfs8];InvCijfs8 = Inverse[Cijfs8];InvCijfs8 = Inverse[Cijfs8];

mnga = FindMinimum[chi2corr[datag,−1, ompl, ga, 2, σ8pl], {ga, 0,−0.1}];mnga = FindMinimum[chi2corr[datag,−1, ompl, ga, 2, σ8pl], {ga, 0,−0.1}];mnga = FindMinimum[chi2corr[datag,−1, ompl, ga, 2, σ8pl], {ga, 0,−0.1}];
gabffull = mnga[[2, 1, 2]];gabffull = mnga[[2, 1, 2]];gabffull = mnga[[2, 1, 2]];

chimngafull = mnga[[1]];chimngafull = mnga[[1]];chimngafull = mnga[[1]];

dga2full = FindRoot[chi2corr[datag,−1, ompl, ga, 2, σ8pl] == chimngafull + 1,dga2full = FindRoot[chi2corr[datag,−1, ompl, ga, 2, σ8pl] == chimngafull + 1,dga2full = FindRoot[chi2corr[datag,−1, ompl, ga, 2, σ8pl] == chimngafull + 1,

{ga, gabffull + 0.5}][[1, 2]]− gabffull;{ga, gabffull + 0.5}][[1, 2]]− gabffull;{ga, gabffull + 0.5}][[1, 2]]− gabffull;

dga1full = FindRoot[chi2corr[datag,−1, ompl, ga, 2, σ8pl] == chimngafull + 1,dga1full = FindRoot[chi2corr[datag,−1, ompl, ga, 2, σ8pl] == chimngafull + 1,dga1full = FindRoot[chi2corr[datag,−1, ompl, ga, 2, σ8pl] == chimngafull + 1,

{ga, gabffull− 0.5}][[1, 2]]− gabffull;{ga, gabffull− 0.5}][[1, 2]]− gabffull;{ga, gabffull− 0.5}][[1, 2]]− gabffull;

p1 = {{{2015.5, gabffull},ErrorBar[{dga1full, dga2full}]}};p1 = {{{2015.5, gabffull},ErrorBar[{dga1full, dga2full}]}};p1 = {{{2015.5, gabffull},ErrorBar[{dga1full, dga2full}]}};
figgap1 = ErrorListPlot [p1,PlotRange→ {All, {−1.7, 0.2}},Frame→ True,PlotMarkers→figgap1 = ErrorListPlot [p1,PlotRange→ {All, {−1.7, 0.2}},Frame→ True,PlotMarkers→figgap1 = ErrorListPlot [p1,PlotRange→ {All, {−1.7, 0.2}},Frame→ True,PlotMarkers→
{�, 15},FrameLabel→ {“Time of Publication”, "ga"} ,BaseStyle→ {FontFamily→ “Times”{�, 15},FrameLabel→ {“Time of Publication”, "ga"} ,BaseStyle→ {FontFamily→ “Times”{�, 15},FrameLabel→ {“Time of Publication”, "ga"} ,BaseStyle→ {FontFamily→ “Times”

},FrameStyle→ Directive[Black],PlotStyle→ {PointSize→ Large,Red];},FrameStyle→ Directive[Black],PlotStyle→ {PointSize→ Large,Red];},FrameStyle→ Directive[Black],PlotStyle→ {PointSize→ Large,Red];

fig11 = Show[figgaerrorplot, figgap1]fig11 = Show[figgaerrorplot, figgap1]fig11 = Show[figgaerrorplot, figgap1]
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Appendix D
Data Compilations of Chapter 3 and Numerical
Algorithms

In this appendix we shortly present the basic commands that were used for the construction
of the figures of Chapter 3. Moreover we present the data compilations used for the performed
analysis. For a more extensive analysis regarding the corresponding code, visit the “Optimum-
Redshift � repository.”

D.1 Data Used in the Analysis

Table D.1: The compilation of BAO data from 2009 to 2018, presented in Ref. [474].

Index z DA ×
(
rfid.s /rs

)
(Mpc) H(z)×

(
rs/r

fid.
s

)
(km/sec Mpc) DV ×

(
rfid.s /rs

)
(Mpc) Year Ref.

1 0.275 - - 1061.87± 29 02/11/2009 [616]
2 0.106 - - 439.3± 19.6 16/06/2011 [547]
3 0.35 - - 1356± 25 28/03/2012 [617]
4 0.44 - - 1716± 83 28/07/2014 [489]
5 0.60 - - 2221± 100 28/07/20144 [489]
6 0.73 - - 2516± 86 28/07/2014 [489]
7 0.15 - - 664± 25 21/01/2015 [548]
8 0.38 1100± 22 81.5± 2.6 1477± 16 11/07/2016 [45]
9 0.51 1309.3± 24.5 90.5± 2.7 1877± 19 11/07/2016 [45]
10 0.61 1418± 27.3 97.3± 2.9 2140± 22 11/07/2016 [45]
11 0.32 980.3± 15.9 78.4± 2.3 1270± 14 11/07/2016 [45]
12 0.57 1387.9± 22.3 96.6± 2.4 2033± 21 11/07/2016 [45]
13 0.31 931.42± 48 78.3± 4.7 1208.36± 33.81 06/12/2016 [618]
14 0.36 1047.04± 44 77.2± 5.7 1388.36± 55 06/12/2016 [618]
15 0.40 1131.34± 44 79.72± 4.9 1560.06± 40 06/12/2016 [618]
16 0.44 1188.78± 32 80.29± 3.4 1679.88± 35 06/12/2016 [618]
17 0.48 1271.43± 25.8 84.69± 3.4 1820.44± 39 06/12/2016 [618]
18 0.52 1336.53± 39 91.97± 7.5 1913.54± 47 06/12/2016 [618]
19 0.56 1385.47± 30.5 97.3± 7.9 2001.91± 51 06/12/2016 [618]
20 0.59 1423.43± 44 97.07± 5.8 2100.43± 48 06/12/2016 [618]
21 0.64 1448.81± 69 97.70± 4.8 2207.51± 55 06/12/2016 [618]
22 2.33 1669.7± 96.1 224± 8 - 27/03/2017 [486]
23 1.52 - - 3843± 147 16/10/2017 [619]
24 0.81 1586.7± 63.5 - - 17/12/2017 [620]
25 0.72 - - 2353± 63 21/12/2017 [621]
26 1.52 1850± 110 162± 12 3985.2± 162.4 08/01/2018 [425]
27 0.978 1586.18± 284.93 113.72± 14.63 2933.59± 327.71 16/01/2018 [427]
28 1.230 1769.08± 159.67 131.44± 12.42 3522.04± 192.74 16/01/2018 [427]
29 1.526 1768.77± 96.59 148.11± 12.75 3954.31± 141.71 16/01/2018 [427]
30 1.944 1807.98± 146.46 172.63± 14.79 4575.17± 241.61 16/01/2018 [427]
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Appendix D. Data Compilations of Chapter 3 and Numerical Algorithms

Table D.2: The compilation of 41 H(z) data presented in
Ref. [622].

Index z H(z) (km/sec Mpc) σH Reference
1 0.070 69 19.6 [623]
2 0.120 68.6 26.2 [623]
3 0.200 72.9 29.6 [623]
4 0.280 88.8 36.6 [623]
5 0.400 95 17 [624]
6 0.090 69 12 [624]
7 0.170 83 8 [624]
8 0.270 77 14 [624]
9 1.300 168 17 [624]
10 0.9 117 23 [624]
11 1.43 177 18 [624]
12 1.53 140 14 [624]
13 1.75 202 40 [624]
14 0.179 75 4 [43]
15 0.199 75 5 [43]
16 0.352 83 14 [43]
17 0.593 104 13 [43]
18 0.68 92 8 [43]
19 0.781 105 12 [43]
20 0.875 125 17 [43]
21 1.037 154 20 [43]
22 0.4004 77 10.02 [487]
23 0.4247 87.1 11.2 [487]
24 0.3802 83 13.5 [487]
25 0.4497 92.8 12.9 [487]
26 0.4783 80.9 9 [487]
27 1.363 160 22.6 [625]
28 1.965 186.5 50.4 [625]
29 0.440 82.6 7.8 [404]
30 0.6 87.9 6.1 [404]
31 0.73 97.3 7.0 [404]
32 0.240 79.69 6.65 [558]
33 0.430 86.45 3.68 [558]
34 0.300 81.7 6.22 [626]
35 0.350 82.7 8.4 [407]
36 0.480 97 62 [42]
37 0.88 90 40 [42]
38 0.570 92.900 7.855 [627]
39 2.300 224 8 [628]
40 2.34 222 7 [629]
41 2.36 226 8 [630]
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Table D.3: The JLA binned data pre-
sented in Ref. [40].

Index z µ σµ
1 0.01 32.9539 0.145886
2 0.012 33.879 0.167796
3 0.014 33.8421 0.0784989
4 0.016 34.1186 0.0723539
5 0.019 34.5934 0.0854606
6 0.023 34.939 0.0561251
7 0.026 35.2521 0.0610683
8 0.031 35.7485 0.0567639
9 0.037 36.0698 0.0567956
10 0.043 36.4346 0.0751431
11 0.051 36.6511 0.0929013
12 0.06 37.158 0.0620892
13 0.07 37.4302 0.0658793
14 0.082 37.9566 0.0546505
15 0.097 38.2533 0.0599337
16 0.114 38.6129 0.0374341
17 0.134 39.0679 0.0386141
18 0.158 39.3414 0.0346886
19 0.186 39.7921 0.0321403
20 0.218 40.1565 0.0329616
21 0.257 40.565 0.0317198
22 0.302 40.9053 0.0392622
23 0.355 41.4214 0.0335758
24 0.418 41.7909 0.0415207
25 0.491 42.2315 0.0393713
26 0.578 42.617 0.0359453
27 0.679 43.0527 0.0627778
28 0.799 43.5042 0.0545914
29 0.94 43.9726 0.0668276
30 1.105 44.5141 0.154604
31 1.3 44.8219 0.138452

D.2 Numerical Algorithms

D.2.1 Reproduction of Fig. 3.1

For the reproduction of Fig. 3.1 we use the same commands as in the previous appendix in
order to construct Eq. (1.54) as well as to import the full compilation of Table 2.1. Then, we
construct the deviations (3.1)-(3.3) through the following algorithm:

(∗The deviation (3.1) for the Observable fσ8 ∗)(∗The deviation (3.1) for the Observable fσ8 ∗)(∗The deviation (3.1) for the Observable fσ8 ∗)
pldfs8ga = Plot [Evaluate[Table[fσ8z[z, ompl,−1, ga, 2, σ8pl]− fσ8z[z, ompl,−1, 0, 2, σ8pl],pldfs8ga = Plot [Evaluate[Table[fσ8z[z, ompl,−1, ga, 2, σ8pl]− fσ8z[z, ompl,−1, 0, 2, σ8pl],pldfs8ga = Plot [Evaluate[Table[fσ8z[z, ompl,−1, ga, 2, σ8pl]− fσ8z[z, ompl,−1, 0, 2, σ8pl],
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{ga,−1.5, 1.5, 0.6}]], {z, 0, 3},Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,{ga,−1.5, 1.5, 0.6}]], {z, 0, 3},Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,{ga,−1.5, 1.5, 0.6}]], {z, 0, 3},Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,
BaseStyle→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["ga=1.5", {1.2, 0.05}] ,BaseStyle→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["ga=1.5", {1.2, 0.05}] ,BaseStyle→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["ga=1.5", {1.2, 0.05}] ,
Text ["ga=-1.5", {1.3,−0.06}]} , ImageSize→ 500] ;Text ["ga=-1.5", {1.3,−0.06}]} , ImageSize→ 500] ;Text ["ga=-1.5", {1.3,−0.06}]} , ImageSize→ 500] ;

(∗Full Dataset ∗)(∗Full Dataset ∗)(∗Full Dataset ∗)
datag1 = Table[{datag[[i, 1]], datag[[i, 2]]− fσ8z[datag[[i, 1]], ompl,−1, 0, 2, σ8pl], datag[[i, 3]]},datag1 = Table[{datag[[i, 1]], datag[[i, 2]]− fσ8z[datag[[i, 1]], ompl,−1, 0, 2, σ8pl], datag[[i, 3]]},datag1 = Table[{datag[[i, 1]], datag[[i, 2]]− fσ8z[datag[[i, 1]], ompl,−1, 0, 2, σ8pl], datag[[i, 3]]},
{i, 1,Length[datag]}];{i, 1,Length[datag]}];{i, 1,Length[datag]}];
pldatag = ErrorListPlot [datag1,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,PlotStyle→pldatag = ErrorListPlot [datag1,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,PlotStyle→pldatag = ErrorListPlot [datag1,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,PlotStyle→
{PointSize→ Large,Blue}, ImageSize→ Large] ;{PointSize→ Large,Blue}, ImageSize→ Large] ;{PointSize→ Large,Blue}, ImageSize→ Large] ;

datagearly = Take[datag1, 20];datagearly = Take[datag1, 20];datagearly = Take[datag1, 20];

(∗ 20 Early Data ∗)(∗ 20 Early Data ∗)(∗ 20 Early Data ∗)
pldatagearly = ErrorListPlot [datagearly,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,pldatagearly = ErrorListPlot [datagearly,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,pldatagearly = ErrorListPlot [datagearly,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,
PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Red}, ImageSize→ Large] ;PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Red}, ImageSize→ Large] ;PlotRange→ {0, 0.8},PlotStyle→ {PointSize→ Large,Red}, ImageSize→ Large] ;

dataglate = Take[datag1,−20];dataglate = Take[datag1,−20];dataglate = Take[datag1,−20];

pldataglate = ErrorListPlot [dataglate,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,pldataglate = ErrorListPlot [dataglate,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,pldataglate = ErrorListPlot [dataglate,Frame→ True,FrameLabel→ {z, "∆fσ8(z)"} ,
PlotStyle→ {PointSize→ Large,Orange}, ImageSize→ Large] ;PlotStyle→ {PointSize→ Large,Orange}, ImageSize→ Large] ;PlotStyle→ {PointSize→ Large,Orange}, ImageSize→ Large] ;

delfs8latga = Show [pldataglate, pldfs8ga,PlotRange→ All,Epilog→ {Text ["ga=1.5",delfs8latga = Show [pldataglate, pldfs8ga,PlotRange→ All,Epilog→ {Text ["ga=1.5",delfs8latga = Show [pldataglate, pldfs8ga,PlotRange→ All,Epilog→ {Text ["ga=1.5",

{1.16, 0.06}] ,Text ["ga=-1.5", {1.16,−0.073}]} ,BaseStyle→ {Large,FontFamily{1.16, 0.06}] ,Text ["ga=-1.5", {1.16,−0.073}]} ,BaseStyle→ {Large,FontFamily{1.16, 0.06}] ,Text ["ga=-1.5", {1.16,−0.073}]} ,BaseStyle→ {Large,FontFamily

→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];

delfs8earlga = Show [pldatagearly, pldfs8ga,PlotRange→ {−0.23, 0.13},Epilog→ {Text ["gadelfs8earlga = Show [pldatagearly, pldfs8ga,PlotRange→ {−0.23, 0.13},Epilog→ {Text ["gadelfs8earlga = Show [pldatagearly, pldfs8ga,PlotRange→ {−0.23, 0.13},Epilog→ {Text ["ga

=1.5", {1.16, 0.06}] ,Text ["ga=-1.5", {1.16,−0.073}]} ,BaseStyle→ {Large,FontFamily→=1.5", {1.16, 0.06}] ,Text ["ga=-1.5", {1.16,−0.073}]} ,BaseStyle→ {Large,FontFamily→=1.5", {1.16, 0.06}] ,Text ["ga=-1.5", {1.16,−0.073}]} ,BaseStyle→ {Large,FontFamily→
“Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];“Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];“Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];

delfs8fullga = Show [pldatag, pldfs8ga,PlotRange→ {−0.23, 0.13},Epilog→ {Text ["ga=1.5"delfs8fullga = Show [pldatag, pldfs8ga,PlotRange→ {−0.23, 0.13},Epilog→ {Text ["ga=1.5"delfs8fullga = Show [pldatag, pldfs8ga,PlotRange→ {−0.23, 0.13},Epilog→ {Text ["ga=1.5"

{1.17, 0.06}] ,Text ["ga=-1.5", {1.17,−0.073}]} ,BaseStyle→ {Large,FontFamily→ “Times”{1.17, 0.06}] ,Text ["ga=-1.5", {1.17,−0.073}]} ,BaseStyle→ {Large,FontFamily→ “Times”{1.17, 0.06}] ,Text ["ga=-1.5", {1.17,−0.073}]} ,BaseStyle→ {Large,FontFamily→ “Times”

, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]];

delfs8ga = GraphicsGrid[{{delfs8earlga, delfs8latga, delfs8fullga}}, Spacings→ 0]delfs8ga = GraphicsGrid[{{delfs8earlga, delfs8latga, delfs8fullga}}, Spacings→ 0]delfs8ga = GraphicsGrid[{{delfs8earlga, delfs8latga, delfs8fullga}}, Spacings→ 0];

Similar commands can be used for the reproduction of Figs. 3.2, 3.3 and 3.5.

D.2.2 Reproduction of Fig. 3.4

For the reproduction of Fig. 3.4 we use the definition (3.8) along with the theoretically
predicted forms of (1.54) as follows:

gamin = 0; gamax = 0.1;gamin = 0; gamax = 0.1;gamin = 0; gamax = 0.1;

(∗Plot of the Sensitivity Function (3.8) for the Observable fσ8 ∗)(∗Plot of the Sensitivity Function (3.8) for the Observable fσ8 ∗)(∗Plot of the Sensitivity Function (3.8) for the Observable fσ8 ∗)
pl1gaeff = Plot[((fσ8z[z, ompl,−1, gamax, 2, σ8pl]− fσ8z[z, ompl,−1, gamin, 2, σ8pl])pl1gaeff = Plot[((fσ8z[z, ompl,−1, gamax, 2, σ8pl]− fσ8z[z, ompl,−1, gamin, 2, σ8pl])pl1gaeff = Plot[((fσ8z[z, ompl,−1, gamax, 2, σ8pl]− fσ8z[z, ompl,−1, gamin, 2, σ8pl])

Veff[z,−1, 0.3]∧(1/2))/((fσ8z[1.2, ompl,−1, gamax, 2, σ8pl]− fσ8z[1.2, ompl,−1, gamin, 2, σ8plVeff[z,−1, 0.3]∧(1/2))/((fσ8z[1.2, ompl,−1, gamax, 2, σ8pl]− fσ8z[1.2, ompl,−1, gamin, 2, σ8plVeff[z,−1, 0.3]∧(1/2))/((fσ8z[1.2, ompl,−1, gamax, 2, σ8pl]− fσ8z[1.2, ompl,−1, gamin, 2, σ8pl

])Veff[1.2,−1, 0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→
{

z, "∆fσ8

√
Veff/∆ga(z)"

}
,])Veff[1.2,−1, 0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→

{
z, "∆fσ8

√
Veff/∆ga(z)"

}
,])Veff[1.2,−1, 0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→

{
z, "∆fσ8

√
Veff/∆ga(z)"

}
,

BaseStyle→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["ga,min=0.0,ga,max=0.1", {4.5BaseStyle→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["ga,min=0.0,ga,max=0.1", {4.5BaseStyle→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["ga,min=0.0,ga,max=0.1", {4.5
, 0.5}, ]} ImageSize→ 600] ;, 0.5}, ]} ImageSize→ 600] ;, 0.5}, ]} ImageSize→ 600] ;
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wmin = −1; wmax = −0.9;wmin = −1; wmax = −0.9;wmin = −1; wmax = −0.9;

(∗Plot of the Sensitivity Function (3.8) for the Observable w ∗)(∗Plot of the Sensitivity Function (3.8) for the Observable w ∗)(∗Plot of the Sensitivity Function (3.8) for the Observable w ∗)
pl1weff = Plot[((fσ8z[z, ompl,wmax, 0, 2, σ8pl]− fσ8z[z, ompl,wmin, 0, 2, σ8pl])Veff[z,−1,pl1weff = Plot[((fσ8z[z, ompl,wmax, 0, 2, σ8pl]− fσ8z[z, ompl,wmin, 0, 2, σ8pl])Veff[z,−1,pl1weff = Plot[((fσ8z[z, ompl,wmax, 0, 2, σ8pl]− fσ8z[z, ompl,wmin, 0, 2, σ8pl])Veff[z,−1,

0.3]∧(1/2))/((fσ8z[0.8, ompl,wmax, 0, 2, σ8pl]− fσ8z[0.8, ompl,wmin, 0, 2, σ8pl])Veff[0.8,−1,0.3]∧(1/2))/((fσ8z[0.8, ompl,wmax, 0, 2, σ8pl]− fσ8z[0.8, ompl,wmin, 0, 2, σ8pl])Veff[0.8,−1,0.3]∧(1/2))/((fσ8z[0.8, ompl,wmax, 0, 2, σ8pl]− fσ8z[0.8, ompl,wmin, 0, 2, σ8pl])Veff[0.8,−1,

0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→
{

z, "∆fσ8

√
Veff/∆w(z)"

}
,BaseStyle0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→

{
z, "∆fσ8

√
Veff/∆w(z)"

}
,BaseStyle0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→

{
z, "∆fσ8

√
Veff/∆w(z)"

}
,BaseStyle

→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["wmin=-1.0,wmax=-0.9", {4.5,−0.5}]}] ;→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["wmin=-1.0,wmax=-0.9", {4.5,−0.5}]}] ;→ FontSize→ 16,PlotRange→ All,Epilog→ {Text ["wmin=-1.0,wmax=-0.9", {4.5,−0.5}]}] ;

omt = 0.30;omt = 0.30;omt = 0.30;

ommin = omt; ommax = omt + 0.01;ommin = omt; ommax = omt + 0.01;ommin = omt; ommax = omt + 0.01;

(∗Plot of the Sensitivity Function (3.8) for the Observable Ωm,0 ∗)(∗Plot of the Sensitivity Function (3.8) for the Observable Ωm,0 ∗)(∗Plot of the Sensitivity Function (3.8) for the Observable Ωm,0 ∗)
pl1omeff = Plot[((fσ8z[z, ommax,−1, 0, 2, σ8pl]− fσ8z[z, ommin,−1, 0, 2, σ8pl])Veff[z,−1,pl1omeff = Plot[((fσ8z[z, ommax,−1, 0, 2, σ8pl]− fσ8z[z, ommin,−1, 0, 2, σ8pl])Veff[z,−1,pl1omeff = Plot[((fσ8z[z, ommax,−1, 0, 2, σ8pl]− fσ8z[z, ommin,−1, 0, 2, σ8pl])Veff[z,−1,

0.3]∧(1/2))/((fσ8z[0.5, ommax,−1, 0, 2, σ8pl]− fσ8z[0.5, ommin,−1, 0, 2, σ8pl])Veff[0.5,−10.3]∧(1/2))/((fσ8z[0.5, ommax,−1, 0, 2, σ8pl]− fσ8z[0.5, ommin,−1, 0, 2, σ8pl])Veff[0.5,−10.3]∧(1/2))/((fσ8z[0.5, ommax,−1, 0, 2, σ8pl]− fσ8z[0.5, ommin,−1, 0, 2, σ8pl])Veff[0.5,−1

, 0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→
{

z, "∆fσ8

√
Veff/∆Ωm(z)"

}
,BaseStyle, 0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→

{
z, "∆fσ8

√
Veff/∆Ωm(z)"

}
,BaseStyle, 0.3]∧(1/2)), {z, 0, 8},Frame→ True,FrameLabel→

{
z, "∆fσ8

√
Veff/∆Ωm(z)"

}
,BaseStyle

→ 16,PlotRange→ All,Epilog→ {Text ["Ωm,0 min=0.30,Ωm,0 max=0.31", {4.5, 0.5}]}] ;→ 16,PlotRange→ All,Epilog→ {Text ["Ωm,0 min=0.30,Ωm,0 max=0.31", {4.5, 0.5}]}] ;→ 16,PlotRange→ All,Epilog→ {Text ["Ωm,0 min=0.30,Ωm,0 max=0.31", {4.5, 0.5}]}] ;

sensstat = GraphicsGrid[{{pl1gaeff, pl1weff, pl1omeff}}, Spacings→ 0, ImageSize→ 1600];sensstat = GraphicsGrid[{{pl1gaeff, pl1weff, pl1omeff}}, Spacings→ 0, ImageSize→ 1600];sensstat = GraphicsGrid[{{pl1gaeff, pl1weff, pl1omeff}}, Spacings→ 0, ImageSize→ 1600];

D.2.3 Reproduction of Fig. 3.7

For the reproduction of Fig. 3.7 we need to introduce the theoretical formulas (3.11)-(3.18)
as follows:

Tcmb = 2.7255;Tcmb = 2.7255;Tcmb = 2.7255;

c = 299792.458;c = 299792.458;c = 299792.458;

cH0 = 2997.92458;cH0 = 2997.92458;cH0 = 2997.92458;

w[a ,w0 ,wa , n ]:=w0 + wa(1− a)nw[a ,w0 ,wa , n ]:=w0 + wa(1− a)nw[a ,w0 ,wa , n ]:=w0 + wa(1− a)n

f [a ,w0 ,wa , n ]:=a−3(1+w0+wa)e−3waHarmonicNumber[n]+3anwaHypergeometricPFQ[{1,1,1−n},{2,2},a]f [a ,w0 ,wa , n ]:=a−3(1+w0+wa)e−3waHarmonicNumber[n]+3anwaHypergeometricPFQ[{1,1,1−n},{2,2},a]f [a ,w0 ,wa , n ]:=a−3(1+w0+wa)e−3waHarmonicNumber[n]+3anwaHypergeometricPFQ[{1,1,1−n},{2,2},a]

zeq[om ?NumberQ, h ?NumberQ]:=2.5 ∗ 10∧4omh∧2(Tcmb/2.7)−4;zeq[om ?NumberQ, h ?NumberQ]:=2.5 ∗ 10∧4omh∧2(Tcmb/2.7)−4;zeq[om ?NumberQ, h ?NumberQ]:=2.5 ∗ 10∧4omh∧2(Tcmb/2.7)−4;

aeq[om ?NumberQ, h ?NumberQ]:=
1

1 + zeq[om, h]
;aeq[om ?NumberQ, h ?NumberQ]:=

1

1 + zeq[om, h]
;aeq[om ?NumberQ, h ?NumberQ]:=

1

1 + zeq[om, h]
;

H[a ?NumberQ, om ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ, h ?NumberQ]:=H[a ?NumberQ, om ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ, h ?NumberQ]:=H[a ?NumberQ, om ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ, h ?NumberQ]:=

100hSqrt
[
a−3om(1 + aeq[om, h]/a) + (1− om(1 + aeq[om, h]))f [a,w0,wa, n]

]
;100hSqrt

[
a−3om(1 + aeq[om, h]/a) + (1− om(1 + aeq[om, h]))f [a,w0,wa, n]

]
;100hSqrt

[
a−3om(1 + aeq[om, h]/a) + (1− om(1 + aeq[om, h]))f [a,w0,wa, n]

]
;

(∗Equivalent Form of the Sound Speed (3.16) ∗)(∗Equivalent Form of the Sound Speed (3.16) ∗)(∗Equivalent Form of the Sound Speed (3.16) ∗)

cs[a ?NumberQ, obh2 ?NumberQ]:=c
/√

3 (1 + (31500obh2(Tcmb/2.7)−4) a) ;cs[a ?NumberQ, obh2 ?NumberQ]:=c
/√

3 (1 + (31500obh2(Tcmb/2.7)−4) a) ;cs[a ?NumberQ, obh2 ?NumberQ]:=c
/√

3 (1 + (31500obh2(Tcmb/2.7)−4) a) ;

zcmb[om ?NumberQ, obh2 ?NumberQ, h ?NumberQ]:=1048
(
1 + 0.00124(obh2)−0.738

)
zcmb[om ?NumberQ, obh2 ?NumberQ, h ?NumberQ]:=1048

(
1 + 0.00124(obh2)−0.738

)
zcmb[om ?NumberQ, obh2 ?NumberQ, h ?NumberQ]:=1048

(
1 + 0.00124(obh2)−0.738

)(
1 +

(
0.0783(obh2)−0.238

1 + 39.5(obh2)0.763

)
(omh∧2)

0.560
1+21.1(obh2)1.81

)
;

(
1 +

(
0.0783(obh2)−0.238

1 + 39.5(obh2)0.763

)
(omh∧2)

0.560
1+21.1(obh2)1.81

)
;

(
1 +

(
0.0783(obh2)−0.238

1 + 39.5(obh2)0.763

)
(omh∧2)

0.560
1+21.1(obh2)1.81

)
;

(∗Drag Redshift ∗)(∗Drag Redshift ∗)(∗Drag Redshift ∗)

zdrag[om ?NumberQ, obh2 ?NumberQ, h ?NumberQ]:=1291
(omh∧2)0.251

1 + 0.659(omh∧2)∧0.828
(1+zdrag[om ?NumberQ, obh2 ?NumberQ, h ?NumberQ]:=1291

(omh∧2)0.251

1 + 0.659(omh∧2)∧0.828
(1+zdrag[om ?NumberQ, obh2 ?NumberQ, h ?NumberQ]:=1291

(omh∧2)0.251

1 + 0.659(omh∧2)∧0.828
(1+
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(
0.313(omh∧2)−0.419

(
1 + 0.607(omh∧2)0.674

))
(obh2)0.238(omh∧2)0.223

)
;

(
0.313(omh∧2)−0.419

(
1 + 0.607(omh∧2)0.674

))
(obh2)0.238(omh∧2)0.223

)
;

(
0.313(omh∧2)−0.419

(
1 + 0.607(omh∧2)0.674

))
(obh2)0.238(omh∧2)0.223

)
;

Clear[DLsol,DL, dL]Clear[DLsol,DL, dL]Clear[DLsol,DL, dL]

DLsol[om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,DLsol[om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,DLsol[om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,

h ?NumberQ]:=

(
DLsol[om, obh2,w0,wa, n, h] = NDSolve

[{
D

[
dL[zz]

(1 + zz)
, zz

]
== c /h ?NumberQ]:=

(
DLsol[om, obh2,w0,wa, n, h] = NDSolve

[{
D

[
dL[zz]

(1 + zz)
, zz

]
== c /h ?NumberQ]:=

(
DLsol[om, obh2,w0,wa, n, h] = NDSolve

[{
D

[
dL[zz]

(1 + zz)
, zz

]
== c /

H

[
1

1 + zz
, om,w0,wa, n, h

]
, dL[0] == 0

}
, dL, {zz, 0, 1300},MaxSteps→ Infinity

])
H

[
1

1 + zz
, om,w0,wa, n, h

]
, dL[0] == 0

}
, dL, {zz, 0, 1300},MaxSteps→ Infinity

])
H

[
1

1 + zz
, om,w0,wa, n, h

]
, dL[0] == 0

}
, dL, {zz, 0, 1300},MaxSteps→ Infinity

])
DL[z ?NumberQ, om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ,DL[z ?NumberQ, om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ,DL[z ?NumberQ, om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ,

n ?NumberQ, h ?NumberQ]:=(dL[z]/.DLsol[om, obh2,w0,wa, n, h])[[1]]//Chopn ?NumberQ, h ?NumberQ]:=(dL[z]/.DLsol[om, obh2,w0,wa, n, h])[[1]]//Chopn ?NumberQ, h ?NumberQ]:=(dL[z]/.DLsol[om, obh2,w0,wa, n, h])[[1]]//Chop

DA[z ?NumberQ, om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ,DA[z ?NumberQ, om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ,DA[z ?NumberQ, om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ,

n ?NumberQ, h ?NumberQ]:=
1

(1 + z)∧2
DL[z, om, obh2,w0,wa, n, h];n ?NumberQ, h ?NumberQ]:=

1

(1 + z)∧2
DL[z, om, obh2,w0,wa, n, h];n ?NumberQ, h ?NumberQ]:=

1

(1 + z)∧2
DL[z, om, obh2,w0,wa, n, h];

(∗Correction Factor ∗)(∗Correction Factor ∗)(∗Correction Factor ∗)
corrfact = 150.82/154.66;corrfact = 150.82/154.66;corrfact = 150.82/154.66;

(∗ Sound Horizon (3.17) Multiplied by the Correction Factor ∗)(∗ Sound Horizon (3.17) Multiplied by the Correction Factor ∗)(∗ Sound Horizon (3.17) Multiplied by the Correction Factor ∗)
rs[ze , om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,rs[ze , om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,rs[ze , om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,

h ?NumberQ]:=NIntegrate

[
cs[x, obh2]

x∧2H[x, om,w0,wa, n, h]
,

{
x, 0,

1

1 + ze[om, obh2, h]

}]
corrfact;h ?NumberQ]:=NIntegrate

[
cs[x, obh2]

x∧2H[x, om,w0,wa, n, h]
,

{
x, 0,

1

1 + ze[om, obh2, h]

}]
corrfact;h ?NumberQ]:=NIntegrate

[
cs[x, obh2]

x∧2H[x, om,w0,wa, n, h]
,

{
x, 0,

1

1 + ze[om, obh2, h]

}]
corrfact;

Dv[zbao , om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,Dv[zbao , om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,Dv[zbao , om ?NumberQ, obh2 ?NumberQ,w0 ?NumberQ,wa ?NumberQ, n ?NumberQ,

h ?NumberQ]:=

((
DL[zbao, om, obh2,w0,wa, n, h]

(1 + zbao)

)
∧2

c ∗ zbao

H
[

1
1+zbao

, om,w0,wa, n, h
])1/3

;h ?NumberQ]:=

((
DL[zbao, om, obh2,w0,wa, n, h]

(1 + zbao)

)
∧2

c ∗ zbao

H
[

1
1+zbao

, om,w0,wa, n, h
])1/3

;h ?NumberQ]:=

((
DL[zbao, om, obh2,w0,wa, n, h]

(1 + zbao)

)
∧2

c ∗ zbao

H
[

1
1+zbao

, om,w0,wa, n, h
])1/3

;

dz[zbao , om , obh2 ,w0 ,wa , n , h ]:=rs[zdrag, om, obh2,w0,wa, n, h]/Dv[zbao, om, obh2,w0,dz[zbao , om , obh2 ,w0 ,wa , n , h ]:=rs[zdrag, om, obh2,w0,wa, n, h]/Dv[zbao, om, obh2,w0,dz[zbao , om , obh2 ,w0 ,wa , n , h ]:=rs[zdrag, om, obh2,w0,wa, n, h]/Dv[zbao, om, obh2,w0,

wa, n, h];wa, n, h];wa, n, h];

baoobs[z , om ,w ]:=dz[z, om, obh2pl, w, 0, 2, h0pl]baoobs[z , om ,w ]:=dz[z, om, obh2pl, w, 0, 2, h0pl]baoobs[z , om ,w ]:=dz[z, om, obh2pl, w, 0, 2, h0pl]

Therefore using the above equations it is straightforward to derive the current BAO theoretical
observables as

(∗The Current BAO Theoretical Observables ∗)(∗The Current BAO Theoretical Observables ∗)(∗The Current BAO Theoretical Observables ∗)
baodv[z , om ,w ]:=rs[zdrag, ompl, obh2pl,−1, 0, 2, h0pl]/dz[z, om, obh2pl, w, 0, 2, h0pl];baodv[z , om ,w ]:=rs[zdrag, ompl, obh2pl,−1, 0, 2, h0pl]/dz[z, om, obh2pl, w, 0, 2, h0pl];baodv[z , om ,w ]:=rs[zdrag, ompl, obh2pl,−1, 0, 2, h0pl]/dz[z, om, obh2pl, w, 0, 2, h0pl];

baoh[z , om ,w ]:=H[1/(1 + z), ompl, w, 0, 2, h0pl]rs[zdrag, om, obh2pl, w, 0, 2, h0pl]/rs[zdrag,baoh[z , om ,w ]:=H[1/(1 + z), ompl, w, 0, 2, h0pl]rs[zdrag, om, obh2pl, w, 0, 2, h0pl]/rs[zdrag,baoh[z , om ,w ]:=H[1/(1 + z), ompl, w, 0, 2, h0pl]rs[zdrag, om, obh2pl, w, 0, 2, h0pl]/rs[zdrag,

ompl, obh2pl,−1, 0, 2, h0pl];ompl, obh2pl,−1, 0, 2, h0pl];ompl, obh2pl,−1, 0, 2, h0pl];

baoda[z , om ,w ]:=DA[z, om, obh2pl, w, 0, 2, h0pl](rs[zdrag, ompl, obh2pl,−1, 0, 2, h0pl]/baoda[z , om ,w ]:=DA[z, om, obh2pl, w, 0, 2, h0pl](rs[zdrag, ompl, obh2pl,−1, 0, 2, h0pl]/baoda[z , om ,w ]:=DA[z, om, obh2pl, w, 0, 2, h0pl](rs[zdrag, ompl, obh2pl,−1, 0, 2, h0pl]/

rs[zdrag, om, obh2pl, w, 0, 2, h0pl]);rs[zdrag, om, obh2pl, w, 0, 2, h0pl]);rs[zdrag, om, obh2pl, w, 0, 2, h0pl]);

Furthermore, we import the BAO compilation presented in Table D.1 through the following
commands

(∗The Corresponding BAO Data of Table D.1 ∗)(∗The Corresponding BAO Data of Table D.1 ∗)(∗The Corresponding BAO Data of Table D.1 ∗)
baodvdat = {{0.978, 2933.59, 327.71}, {1.23, 3522.04, 192.74}, {1.526, 3954.31, 141.71},baodvdat = {{0.978, 2933.59, 327.71}, {1.23, 3522.04, 192.74}, {1.526, 3954.31, 141.71},baodvdat = {{0.978, 2933.59, 327.71}, {1.23, 3522.04, 192.74}, {1.526, 3954.31, 141.71},
{1.944, 4575, 241.61}, {1.52, 3985.2, 162.36}, {0.72, 2353, 62}, {0.35, 1356, 25},{1.944, 4575, 241.61}, {1.52, 3985.2, 162.36}, {0.72, 2353, 62}, {0.35, 1356, 25},{1.944, 4575, 241.61}, {1.52, 3985.2, 162.36}, {0.72, 2353, 62}, {0.35, 1356, 25},
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{0.106, 439.3, 19.6}, {0.15, 664, 25}, {0.38, 1477, 16}, {0.51, 1877, 19}, {0.61, 2140, 22},{0.106, 439.3, 19.6}, {0.15, 664, 25}, {0.38, 1477, 16}, {0.51, 1877, 19}, {0.61, 2140, 22},{0.106, 439.3, 19.6}, {0.15, 664, 25}, {0.38, 1477, 16}, {0.51, 1877, 19}, {0.61, 2140, 22},
{0.32, 1270, 14}, {0.57, 2033, 21}, {0.44, 1716, 83}, {0.60, 2221, 100}, {0.73, 2516, 86},{0.32, 1270, 14}, {0.57, 2033, 21}, {0.44, 1716, 83}, {0.60, 2221, 100}, {0.73, 2516, 86},{0.32, 1270, 14}, {0.57, 2033, 21}, {0.44, 1716, 83}, {0.60, 2221, 100}, {0.73, 2516, 86},
{1.52, 3843, 147}, {0.31, 1208.36, 33.81}, {0.36, 1388.36, 55}, {0.4, 1560.06, 40},{1.52, 3843, 147}, {0.31, 1208.36, 33.81}, {0.36, 1388.36, 55}, {0.4, 1560.06, 40},{1.52, 3843, 147}, {0.31, 1208.36, 33.81}, {0.36, 1388.36, 55}, {0.4, 1560.06, 40},
{0.44, 1679.88, 35}, {0.48, 1820.44, 39}, {0.52, 1913.54, 47}, {0.56, 2001.91, 51},{0.44, 1679.88, 35}, {0.48, 1820.44, 39}, {0.52, 1913.54, 47}, {0.56, 2001.91, 51},{0.44, 1679.88, 35}, {0.48, 1820.44, 39}, {0.52, 1913.54, 47}, {0.56, 2001.91, 51},
{0.59, 2100.43, 48}, {0.64, 2207.51, 55}, {0.275, 1061.87, 29}};{0.59, 2100.43, 48}, {0.64, 2207.51, 55}, {0.275, 1061.87, 29}};{0.59, 2100.43, 48}, {0.64, 2207.51, 55}, {0.275, 1061.87, 29}};
baohdat = {{0.978, 113.72, 14.63}, {1.23, 131.44, 12.42}, {1.526, 148.11, 12.75},baohdat = {{0.978, 113.72, 14.63}, {1.23, 131.44, 12.42}, {1.526, 148.11, 12.75},baohdat = {{0.978, 113.72, 14.63}, {1.23, 131.44, 12.42}, {1.526, 148.11, 12.75},
{1.944, 172.63, 14.79}, {1.52, 162, 12}, {0.38, 81.5, 2.6}, {0.51, 90.5, 2.7}, {0.61, 97.3, 2.9},{1.944, 172.63, 14.79}, {1.52, 162, 12}, {0.38, 81.5, 2.6}, {0.51, 90.5, 2.7}, {0.61, 97.3, 2.9},{1.944, 172.63, 14.79}, {1.52, 162, 12}, {0.38, 81.5, 2.6}, {0.51, 90.5, 2.7}, {0.61, 97.3, 2.9},
{0.32, 78.4, 2.3}, {0.57, 96.6, 2.4}, {2.33, 224, 8}, {0.31, 78.3, 4.7}, {0.36, 77.2, 5.7},{0.32, 78.4, 2.3}, {0.57, 96.6, 2.4}, {2.33, 224, 8}, {0.31, 78.3, 4.7}, {0.36, 77.2, 5.7},{0.32, 78.4, 2.3}, {0.57, 96.6, 2.4}, {2.33, 224, 8}, {0.31, 78.3, 4.7}, {0.36, 77.2, 5.7},
{0.4, 79.72, 4.9}, {0.44, 80.29, 3.4}, {0.48, 84.69, 3.4}, {0.52, 91.97, 7.5}, {0.56, 97.3, 7.9},{0.4, 79.72, 4.9}, {0.44, 80.29, 3.4}, {0.48, 84.69, 3.4}, {0.52, 91.97, 7.5}, {0.56, 97.3, 7.9},{0.4, 79.72, 4.9}, {0.44, 80.29, 3.4}, {0.48, 84.69, 3.4}, {0.52, 91.97, 7.5}, {0.56, 97.3, 7.9},
{0.59, 97.07, 5.8}, {0.64, 97.7, 4.8}};{0.59, 97.07, 5.8}, {0.64, 97.7, 4.8}};{0.59, 97.07, 5.8}, {0.64, 97.7, 4.8}};
baodadat = {{0.978, 1586.18, 284.93}, {1.23, 1769.08, 159.67}, {1.526, 1768.77, 96.59},baodadat = {{0.978, 1586.18, 284.93}, {1.23, 1769.08, 159.67}, {1.526, 1768.77, 96.59},baodadat = {{0.978, 1586.18, 284.93}, {1.23, 1769.08, 159.67}, {1.526, 1768.77, 96.59},
{1.944, 1807.98, 146.46}, {1.52, 1850, 110}, {0.38, 1100, 22.4}, {0.51, 1309.3, 24.5},{1.944, 1807.98, 146.46}, {1.52, 1850, 110}, {0.38, 1100, 22.4}, {0.51, 1309.3, 24.5},{1.944, 1807.98, 146.46}, {1.52, 1850, 110}, {0.38, 1100, 22.4}, {0.51, 1309.3, 24.5},
{0.61, 1418, 27.3}, {0.32, 980.3, 15.9}, {0.57, 1387.9, 22.3}, {2.33, 1669.7, 96.1},{0.61, 1418, 27.3}, {0.32, 980.3, 15.9}, {0.57, 1387.9, 22.3}, {2.33, 1669.7, 96.1},{0.61, 1418, 27.3}, {0.32, 980.3, 15.9}, {0.57, 1387.9, 22.3}, {2.33, 1669.7, 96.1},
{0.31, 931.42, 48}, {0.36, 1047.04, 44}, {0.4, 1131.34, 44}, {0.44, 1188, 78, 32},{0.31, 931.42, 48}, {0.36, 1047.04, 44}, {0.4, 1131.34, 44}, {0.44, 1188, 78, 32},{0.31, 931.42, 48}, {0.36, 1047.04, 44}, {0.4, 1131.34, 44}, {0.44, 1188, 78, 32},
{0.48, 1271.43, 25.8}, {0.52, 1336.53, 39}, {0.56, 1385.47, 30.5}, {0.59, 1423.43, 44},{0.48, 1271.43, 25.8}, {0.52, 1336.53, 39}, {0.56, 1385.47, 30.5}, {0.59, 1423.43, 44},{0.48, 1271.43, 25.8}, {0.52, 1336.53, 39}, {0.56, 1385.47, 30.5}, {0.59, 1423.43, 44},
{0.64, 1448.81, 69}, {0.81, 1586.7, 63.5}};{0.64, 1448.81, 69}, {0.81, 1586.7, 63.5}};{0.64, 1448.81, 69}, {0.81, 1586.7, 63.5}};

Now we are ready to construct Fig. 3.7 with a similar algorith as for the observable for the
fσ8(z) observable. For the DV ×

(
rfid.s /rs

)
observable we write the following commands

omt = 0.30;omt = 0.30;omt = 0.30;

plbaodv = Plot [Evaluate[Table[baodv[z, om,−1]− baodv[z, omt,−1], {om, omt− 0.05,plbaodv = Plot [Evaluate[Table[baodv[z, om,−1]− baodv[z, omt,−1], {om, omt− 0.05,plbaodv = Plot [Evaluate[Table[baodv[z, om,−1]− baodv[z, omt,−1], {om, omt− 0.05,

omt + 0.05, 0.02}]], {z, 0.1, 5},Frame→ True,FrameLabel→
{

z, "ΔDV (z)(rs
fid/rs)"

}
,omt + 0.05, 0.02}]], {z, 0.1, 5},Frame→ True,FrameLabel→

{
z, "ΔDV (z)(rs

fid/rs)"
}
,omt + 0.05, 0.02}]], {z, 0.1, 5},Frame→ True,FrameLabel→

{
z, "ΔDV (z)(rs

fid/rs)"
}
,

BaseStyle→ {Large,FontFamily→ “Times”, 18},LabelStyle→ Directive[Black,Large],BaseStyle→ {Large,FontFamily→ “Times”, 18},LabelStyle→ Directive[Black,Large],BaseStyle→ {Large,FontFamily→ “Times”, 18},LabelStyle→ Directive[Black,Large],

,FrameStyle→ Directive[Black,Thick],PlotRange→ All,Epilog→ {Text ["Ωm,0=0.25",,FrameStyle→ Directive[Black,Thick],PlotRange→ All,Epilog→ {Text ["Ωm,0=0.25",,FrameStyle→ Directive[Black,Thick],PlotRange→ All,Epilog→ {Text ["Ωm,0=0.25",

{0.5,−40}] ,Text ["Ωm,0=0.35", {0.5, 40}]}] ;{0.5,−40}] ,Text ["Ωm,0=0.35", {0.5, 40}]}] ;{0.5,−40}] ,Text ["Ωm,0=0.35", {0.5, 40}]}] ;

baodvdat1 = Table[{baodvdat[[i, 1]], baodvdat[[i, 2]]− baodv[baodvdat[[i, 1]], omt,−1],baodvdat1 = Table[{baodvdat[[i, 1]], baodvdat[[i, 2]]− baodv[baodvdat[[i, 1]], omt,−1],baodvdat1 = Table[{baodvdat[[i, 1]], baodvdat[[i, 2]]− baodv[baodvdat[[i, 1]], omt,−1],

baodvdat[[i, 3]]}, {i, 1,Length[baodvdat]}];baodvdat[[i, 3]]}, {i, 1,Length[baodvdat]}];baodvdat[[i, 3]]}, {i, 1,Length[baodvdat]}];
plbaodvdat1 = ErrorListPlot [baodvdat1,Frame→ True,FrameLabel→ {z,plbaodvdat1 = ErrorListPlot [baodvdat1,Frame→ True,FrameLabel→ {z,plbaodvdat1 = ErrorListPlot [baodvdat1,Frame→ True,FrameLabel→ {z,
"ΔDV (z)(rs

fid/rs) [Mpc]"
}
,BaseStyle→ FontSize→ 16,PlotStyle→ {PointSize→ Large,"ΔDV (z)(rs

fid/rs) [Mpc]"
}
,BaseStyle→ FontSize→ 16,PlotStyle→ {PointSize→ Large,"ΔDV (z)(rs

fid/rs) [Mpc]"
}
,BaseStyle→ FontSize→ 16,PlotStyle→ {PointSize→ Large,

Blue}, ImageSize→ Large] ;Blue}, ImageSize→ Large] ;Blue}, ImageSize→ Large] ;

dvom = Show [plbaodvdat1, plbaodv,PlotRange→ {{0.1, 3}, {−200, 300}},Epilog→ {Textdvom = Show [plbaodvdat1, plbaodv,PlotRange→ {{0.1, 3}, {−200, 300}},Epilog→ {Textdvom = Show [plbaodvdat1, plbaodv,PlotRange→ {{0.1, 3}, {−200, 300}},Epilog→ {Text

["Ωm,0=0.25", {2.5, 95}] ,Text ["Ωm,0=0.35", {2.5,−83}]} ,BaseStyle→ {Large,FontFamily→["Ωm,0=0.25", {2.5, 95}] ,Text ["Ωm,0=0.35", {2.5,−83}]} ,BaseStyle→ {Large,FontFamily→["Ωm,0=0.25", {2.5, 95}] ,Text ["Ωm,0=0.35", {2.5,−83}]} ,BaseStyle→ {Large,FontFamily→
“Times”, 18}, LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]]“Times”, 18}, LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]]“Times”, 18}, LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]]

plbaodvw = Plot [Evaluate[Table[baodv[z, ompl, w]− baodv[z, ompl,−1], {w,−1.5,−0.5, 0.2}]]plbaodvw = Plot [Evaluate[Table[baodv[z, ompl, w]− baodv[z, ompl,−1], {w,−1.5,−0.5, 0.2}]]plbaodvw = Plot [Evaluate[Table[baodv[z, ompl, w]− baodv[z, ompl,−1], {w,−1.5,−0.5, 0.2}]]
, {z, 0.1, 5},Frame→ True,FrameLabel→

{
z, "(z)(rs

fid/rs) [Mpc]"
}
, BaseStyle→ {Large,, {z, 0.1, 5},Frame→ True,FrameLabel→

{
z, "(z)(rs

fid/rs) [Mpc]"
}
, BaseStyle→ {Large,, {z, 0.1, 5},Frame→ True,FrameLabel→

{
z, "(z)(rs

fid/rs) [Mpc]"
}
, BaseStyle→ {Large,

FontFamily→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→FontFamily→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→FontFamily→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→
Directive[Black,Thick],PlotRange→ All,Epilog→ {Text[“w=-1.5”, {0.70, 230}],Directive[Black,Thick],PlotRange→ All,Epilog→ {Text[“w=-1.5”, {0.70, 230}],Directive[Black,Thick],PlotRange→ All,Epilog→ {Text[“w=-1.5”, {0.70, 230}],
Text[“w=-0.5”, {0.5,−400}]}];Text[“w=-0.5”, {0.5,−400}]}];Text[“w=-0.5”, {0.5,−400}]}];
dvw = Show[plbaodvdat1, plbaodvw,PlotRange→ {{0.1, 3}, {−400, 400}},Epilog→dvw = Show[plbaodvdat1, plbaodvw,PlotRange→ {{0.1, 3}, {−400, 400}},Epilog→dvw = Show[plbaodvdat1, plbaodvw,PlotRange→ {{0.1, 3}, {−400, 400}},Epilog→
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{Text[“w=-1.5”, {0.70, 247}],Text[“w=-0.5”, {0.5,−280}]},BaseStyle→ {Large,FontFamily{Text[“w=-1.5”, {0.70, 247}],Text[“w=-0.5”, {0.5,−280}]},BaseStyle→ {Large,FontFamily{Text[“w=-1.5”, {0.70, 247}],Text[“w=-0.5”, {0.5,−280}]},BaseStyle→ {Large,FontFamily

→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]]→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]]→ “Times”, 18},LabelStyle→ Directive[Black,Large],FrameStyle→ Directive[Black,Thick]]

dvfig = GraphicsGrid[{{dvw, dvom}}, Spacings→ 0, ImageSize→ 1200]dvfig = GraphicsGrid[{{dvw, dvom}}, Spacings→ 0, ImageSize→ 1200]dvfig = GraphicsGrid[{{dvw, dvom}}, Spacings→ 0, ImageSize→ 1200]

D.2.4 Maximum Likelihood Method for BAO Data

Armed with the algorithms presented in the previous subsection it is straightforward to
construct the relevant χ2 function for the BAO data (3.21). In particular, we present the
appropriate commands for the construction of the χ2 function for theDV×

(
rfid.s /rs

)
compilation

(similar commands can be used for the other two observables). But first we need to import the
subcovariance matrix of the WiggleZ survey, recalling that the fisher matrix Fij is the inverse
of the covariance matrix Cij, as

(∗The Fisher Matrix of the WiggleZ Survey ∗)(∗The Fisher Matrix of the WiggleZ Survey ∗)(∗The Fisher Matrix of the WiggleZ Survey ∗)

FijbaodvWiggleZ = 10−4 ∗

 2.17898878 −1.11633 0.46982
−1.11633 1.70712 −0.71847
0.46982 −0.71847 1.65283

 ;FijbaodvWiggleZ = 10−4 ∗

 2.17898878 −1.11633 0.46982
−1.11633 1.70712 −0.71847
0.46982 −0.71847 1.65283

 ;FijbaodvWiggleZ = 10−4 ∗

 2.17898878 −1.11633 0.46982
−1.11633 1.70712 −0.71847
0.46982 −0.71847 1.65283

 ;

Cijbaodvwiggle = Inverse[FijbaodvWiggleZ];Cijbaodvwiggle = Inverse[FijbaodvWiggleZ];Cijbaodvwiggle = Inverse[FijbaodvWiggleZ];

WiggleZ = {15, 16, 17};WiggleZ = {15, 16, 17};WiggleZ = {15, 16, 17};
Cijbao = DiagonalMatrix[baodvdat[[All, 3]]∧2];Cijbao = DiagonalMatrix[baodvdat[[All, 3]]∧2];Cijbao = DiagonalMatrix[baodvdat[[All, 3]]∧2];

Cijbao[[WiggleZ,WiggleZ]] = Cijbaodvwiggle;Cijbao[[WiggleZ,WiggleZ]] = Cijbaodvwiggle;Cijbao[[WiggleZ,WiggleZ]] = Cijbaodvwiggle;

(∗Total Inverse Covariance Matrix ∗)(∗Total Inverse Covariance Matrix ∗)(∗Total Inverse Covariance Matrix ∗)
InvCijbao = Inverse[Cijbao];InvCijbao = Inverse[Cijbao];InvCijbao = Inverse[Cijbao];

Cijbao//MatrixForm;Cijbao//MatrixForm;Cijbao//MatrixForm;

(∗The χ2 Function (3.21) ∗)(∗The χ2 Function (3.21) ∗)(∗The χ2 Function (3.21) ∗)
vecbao[data , om ,w ]:=Table[(data[[i, 2]]− baodv[data[[i, 1]], om, w]),vecbao[data , om ,w ]:=Table[(data[[i, 2]]− baodv[data[[i, 1]], om, w]),vecbao[data , om ,w ]:=Table[(data[[i, 2]]− baodv[data[[i, 1]], om, w]),

{i, 1,Length[data]}];{i, 1,Length[data]}];{i, 1,Length[data]}];
chi2bao[data , om ,w ]:=vecbao[data, om, w].InvCijbao.vecbao[data, om, w]chi2bao[data , om ,w ]:=vecbao[data, om, w].InvCijbao.vecbao[data, om, w]chi2bao[data , om ,w ]:=vecbao[data, om, w].InvCijbao.vecbao[data, om, w]

Then, we apply the maximum likelihood method as usual using the command FindMinimum

and derive the best fit values through

chi2minbaodvfull = FindMinimum[chi2bao[baodvdat, om, w], {om, .3, .31}, {w,−1,−1.1}]chi2minbaodvfull = FindMinimum[chi2bao[baodvdat, om, w], {om, .3, .31}, {w,−1,−1.1}]chi2minbaodvfull = FindMinimum[chi2bao[baodvdat, om, w], {om, .3, .31}, {w,−1,−1.1}]

For the construction of the 1σ− 3σ confidence contours in the parametric space Ωm,0 −w that
are demonstrated in Fig. 3.11 (left panel), we utilize the command ContourPlot as

contourfullbaodv = ContourPlot[chi2bao[baodvdat, om, w], {om, 0.1, 0.55}, {w,−1.35,−0.55},contourfullbaodv = ContourPlot[chi2bao[baodvdat, om, w], {om, 0.1, 0.55}, {w,−1.35,−0.55},contourfullbaodv = ContourPlot[chi2bao[baodvdat, om, w], {om, 0.1, 0.55}, {w,−1.35,−0.55},
Contours→ {chi2minbaodvfull[[1]] + dchi[1, 2], chi2minbaodvfull[[1]] + dchi[2, 2],Contours→ {chi2minbaodvfull[[1]] + dchi[1, 2], chi2minbaodvfull[[1]] + dchi[2, 2],Contours→ {chi2minbaodvfull[[1]] + dchi[1, 2], chi2minbaodvfull[[1]] + dchi[2, 2],

chi2minbaodvfull[[1]] + dchi[3, 2]},ContourShading→ {Hue[0.6, .9, .9],Hue[0.6, .5, .9],chi2minbaodvfull[[1]] + dchi[3, 2]},ContourShading→ {Hue[0.6, .9, .9],Hue[0.6, .5, .9],chi2minbaodvfull[[1]] + dchi[3, 2]},ContourShading→ {Hue[0.6, .9, .9],Hue[0.6, .5, .9],

Hue[0.6, .2, .9],White},ContourStyle→ {Hue[0.6, .9, .9],Hue[0.6, .5, .9],Hue[0.6, .2, .9],White}]Hue[0.6, .2, .9],White},ContourStyle→ {Hue[0.6, .9, .9],Hue[0.6, .5, .9],Hue[0.6, .2, .9],White}]Hue[0.6, .2, .9],White},ContourStyle→ {Hue[0.6, .9, .9],Hue[0.6, .5, .9],Hue[0.6, .2, .9],White}]
contfullbaodv = Show [contourfullbaodv,FrameLabel→ {"Ωm,0",w} ,PlotRange→contfullbaodv = Show [contourfullbaodv,FrameLabel→ {"Ωm,0",w} ,PlotRange→contfullbaodv = Show [contourfullbaodv,FrameLabel→ {"Ωm,0",w} ,PlotRange→
{{0.1, 0.55}, {−1.35,−0.55}},PlotRangeClipping→ True,BaseStyle→ {FontFamily→,{{0.1, 0.55}, {−1.35,−0.55}},PlotRangeClipping→ True,BaseStyle→ {FontFamily→,{{0.1, 0.55}, {−1.35,−0.55}},PlotRangeClipping→ True,BaseStyle→ {FontFamily→,
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“Times”, 18},Epilog→ {{Dashed,Line[{{ompl,−2}, {ompl, 1}}]}, {Dashed,Line[{{0,−1},“Times”, 18},Epilog→ {{Dashed,Line[{{ompl,−2}, {ompl, 1}}]}, {Dashed,Line[{{0,−1},“Times”, 18},Epilog→ {{Dashed,Line[{{ompl,−2}, {ompl, 1}}]}, {Dashed,Line[{{0,−1},
{1,−1}}]}, {PointSize[Large],Red,Point[{ompl,−1}]}, {PointSize[Large],Green,{1,−1}}]}, {PointSize[Large],Red,Point[{ompl,−1}]}, {PointSize[Large],Green,{1,−1}}]}, {PointSize[Large],Red,Point[{ompl,−1}]}, {PointSize[Large],Green,

Point[{chi2minbaodvfull[[2, 1, 2]], chi2minbaodvfull[[2, 2, 2]]}]},Text[“Best-fit for Full Dataset”Point[{chi2minbaodvfull[[2, 1, 2]], chi2minbaodvfull[[2, 2, 2]]}]},Text[“Best-fit for Full Dataset”Point[{chi2minbaodvfull[[2, 1, 2]], chi2minbaodvfull[[2, 2, 2]]}]},Text[“Best-fit for Full Dataset”

, {0.35,−0.72}]},FrameStyle→ Directive[Black], ImageSize→ Medium], {0.35,−0.72}]},FrameStyle→ Directive[Black], ImageSize→ Medium], {0.35,−0.72}]},FrameStyle→ Directive[Black], ImageSize→ Medium]

For the middle and right panel of Fig. 3.11 we present same confidence contours for low redshift
DV ×

(
rfid.s /rs

)
(with z < 0.55) and high redshift DV ×

(
rfid.s /rs

)
(with z > 0.55). This is done

using the Select command through the following:

lowzbaodv = Select[Sort[baodvdat,#1[[1]] < #2[[1]]&],#[[1]] < 0.55&];lowzbaodv = Select[Sort[baodvdat,#1[[1]] < #2[[1]]&],#[[1]] < 0.55&];lowzbaodv = Select[Sort[baodvdat,#1[[1]] < #2[[1]]&],#[[1]] < 0.55&];

highzbaodv = Select[Sort[baodvdat,#1[[1]] < #2[[1]]&],#[[1]] > 0.55&];highzbaodv = Select[Sort[baodvdat,#1[[1]] < #2[[1]]&],#[[1]] > 0.55&];highzbaodv = Select[Sort[baodvdat,#1[[1]] < #2[[1]]&],#[[1]] > 0.55&];

With similar commands one can recreate the rest of the figures of Chapter 3.
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Appendix E
Analysis of the Transition Dark Energy Models
Incorporating the H0 Measurement

In this appendix we discuss the impact of including the measurement of H0 = 73.2 ±
1.3 km s−1 Mpc−1 [518] on the different dark energy models discussed in Chapter 5 instead of
the local gaussian prior of the absolute magnitude Mc = −19.244±0.037 mag. This task is per-
formed in order to reveal that despite the strong constraining nature of the SH0ES measurement
it is more appropriate to adopt the local prior on M due to the following reasons [541]:

• Including the H0 prior leads to a double counting of low redshift SnIa. As we described
in Chapter 5 for the determination of the H0 value the SnIa in the redshift range 0.023 <
z < 0.15 is used. Therefore, when the SnIa dataset is used to constrain the cosmological
parameters of each model, the same data are taken into account in the minimization
process leading to a double counting.

• For the determination of the H0 value, since we focus on low redshifts, a Taylor expansion
is performed and an extrapolation method is used for q0 and j0 constant to their ΛCDM
value. However, this cosmographic analysis may fail for particular dark energy models
that include sudden transitions such as the LMT and LwMT giving wrong values of the
parameters.

• For the determination of H0, the statistical information on M is included.

Moreover as will show below the obtained absolute magnitude M for smooth H(z) deformation
models are inconsistent with the measured Cepheid absolute magnitude Mc = −19.244± 0.037
mag.

Repeating the MCMC analysis described in Chapter 5 and using the same likelihoods along
with the SH0ES gaussian prior on H0 we find the best fit values of the cosmological parameters
that are illustrated in Table E.1. As we can clearly see all the considered models except the
transition ones LMT and LwMT produce a significantly lower value for M compared to Mc.
This can also be seen if we plot (Fig. E.1) the absolute magnitude M as a function of redshift
and superimpose the binned Pantheon data for all the considered models. Of course for the
smooth deformation models the absolute magnitude is constant. More specifically, the wCDM
and CPL models give a H0 best fit value that is inconsistent with the SH0ES measurement [518]
at more than 2.4σ, in contrast to the PEDE dark energy model that gives a value consistent
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Parameters ΛCDM wCDM CPL LwMT PEDE LMT
(zt ≥ 0.01) (zt = 0.01)

Ωm,0 0.3022+0.0050
−0.0052 0.2967+0.0067

−0.0064 0.2951+0.0063
−0.0067 0.2989+0.0055

−0.0060 0.281± 0.005 0.3021+0.0053
−0.0052

ns 0.9705± 0.0037 0.9684± 0.004 0.9668± 0.0040 0.9706± 0.0037 0.9621+0.0036
−0.0034 0.9705± 0.0038

H0 68.36± 0.4 69.17+0.65
−0.76 69.50± 0.71 68.71± 0.5 71.69+0.45

−0.46 68.36+0.40
−0.41

σ8 0.8075+0.0058
−0.0064 0.8183+0.0089

−0.01 0.8258± 0.0099 0.8098± 0.0064 0.85310.0064
−0.0058 0.8086+0.0058

−0.0064

M −19.40± 0.01 −19.38± 0.02 −19.37+0.017
−0.018 −19.24 −19.34± 0.01 −19.24

∆M - - - −0.1652± 0.011 - −0.159± 0.011
M> ≡Mc + ∆M - - - −19.405± 0.011 - −19.40± 0.011

∆w - - - > −0.7 - -
at - - - > 0.98 - -
w0 - −1.038+0.031

−0.018 −0.9576+0.075
−0.078 - - -

wa - - −0.38+0.32
−0.27 - - -

χ2 3849 3846 3845 3846 3862 3850
∆χ2 - −3 −4 −3 +13 +1

Table E.1: The 1σ constrains of the parameters for all dark energy models in question
when the SH0ES gaussian prior H0 = 73.2 ± 1.3 km s−1 Mpc−1 is imposed, using the
CMB+BAO+Pantheon+RSD likelihoods.

LMT (zt=0.01)PEDE

0.005 0.010 0.050 0.100 0.500 1
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M

MPEDE=-19.34

MC=-19.24

CPL (w0=-0.957, wa=-0.4)wCDM (w=-1.03)
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-19.2
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z

M

MwCDM=-19.38

MCPL=-19.37

MC=-19.24

Figure E.1: The best fit absolute magnitude M of the binned Pantheon data as a function of
the redshift z. In the left panel we show the corresponding best fit data for the LMT model
with zt = 0.01 (blue points) and PEDE models (orange points). In the right panel we show
the corresponding best fit data for the wCDM model with w = −1.03 (green points) and CPL
models (red points). From Ref. [536].

with the SH0ES measurement at the 1σ level in agreement with previous studies. Conclusively,
although in this case the majority of dark energy models (except PEDE and LMT ) display a
better quality of fit to the data than that of ΛCDM (cyan row of Table E.1), they fail to give
an M value consistent with the Mc measurement that lies in the core of the H0 problem. For
consistency we also show the 1σ − 2σ confidence contours in Fig. E.2.
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Appendix E. Analysis of the Transition Dark Energy Models Incorporating the H0

Measurement
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Figure E.2: The 1σ−2σ confidence contours for the common parameters of the ΛCDM, wCDM,
CPL and PEDE dark energy model corresponding to the constraints of Table E.1, imposing
the SH0ES gaussian prior on H0 = 73.2 ± 1.3 km s−1 Mpc−1. In this plot σ8,0 ≡ σ8. From
Ref. [536].
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Appendix F
Washington Experiment Data

In this appendix we present the data of the Washington experiment that were used for the
analysis of Chapter 6. In particular, in Table F.1 we present the distance between the attractor
and the detector in mm denoted as r, the torque residuals δτ along with their corresponding
1σ values as well as the different setups using different thickness for the attractor, denoted as
Experiments I, II and III respectively.

Table F.1: The torque residuals used for the maximum likelihood
method of Chapter 6 presented in Ref. [566].

r (mm) δτ ≡ τ − τN (f N ·m) 1σ Errors of δτ Experiment
0.062 0.039 0.036 I
0.065 0.036 0.023 I
0.067 -0.008 0.014 I
0.068 -0.007 0.006 I
0.07 -0.018 0.012 I
0.073 -0.002 0.01 I
0.077 0.032 0.014 I
0.084 0.009 0.007 I
0.095 0.005 0.006 I
0.106 -0.004 0.008 I
0.114 -0.006 0.005 I
0.146 -0.001 0.006 I
0.237 0.002 0.006 I
0.379 0.007 0.006 I
0.577 -0.007 0.003 I
0.915 0. 0.007 I
1.301 0.003 0.005 I
1.995 0.004 0.006 I
3.021 0.008 0.006 I
4.027 0. 0.005 I
5.04 0.001 0.004 I
8.512 0.001 0.004 I
0.065 0.012 0.018 II
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Appendix F. Washington Experiment Data

0.067 0.016 0.027 II
0.069 0.029 0.035 II
0.069 -0.021 0.015 II
0.072 0.014 0.012 II
0.075 0.009 0.02 II
0.079 0.01 0.014 II
0.082 -0.023 0.01 II
0.085 0.011 0.029 II
0.087 0.011 0.017 II
0.089 -0.002 0.009 II
0.091 0.012 0.014 II
0.095 0.001 0.01 II
0.095 0.001 0.007 II
0.099 0.004 0.007 II
0.106 -0.002 0.007 II
0.122 0. 0.004 II
0.132 0.006 0.008 II
0.145 0.005 0.009 II
0.179 -0.003 0.005 II
0.222 -0.006 0.007 II
0.274 0.002 0.005 II
0.322 -0.001 0.006 II
0.531 0.011 0.006 II
1.024 0.007 0.005 II
1.221 0.005 0.005 II
2.014 0.001 0.005 II
3.021 0.002 0.003 II
4.014 -0.002 0.005 II
4.983 0.004 0.004 II
5.981 -0.005 0.006 II
8.054 0.007 0.006 II
0.057 0.075 0.05 III
0.06 0.035 0.036 III
0.06 0.013 0.028 III
0.061 0.006 0.03 III
0.064 0.016 0.026 III
0.064 -0.021 0.043 III
0.065 -0.016 0.019 III
0.069 0.004 0.014 III
0.07 0.012 0.023 III
0.07 0.025 0.023 III
0.072 -0.023 0.02 III
0.076 -0.014 0.016 III
0.081 0.009 0.011 III
0.085 -0.005 0.011 III
0.098 -0.006 0.01 III
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0.116 0.002 0.007 III
0.131 -0.022 0.01 III
0.151 0.013 0.007 III
0.162 0.005 0.007 III
0.176 -0.007 0.006 III
0.205 -0.004 0.005 III
0.23 -0.004 0.007 III
0.322 -0.002 0.005 III
0.548 0. 0.009 III
0.777 -0.004 0.005 III
1.044 -0.006 0.007 III
1.168 -0.013 0.005 III
1.958 -0.002 0.005 III
2.423 -0.01 0.006 III
2.957 0.01 0.006 III
3.784 -0.005 0.006 III
4.993 0.002 0.006 III
6.416 -0.002 0.005 III

151



Bibliography

[1] A. Einstein, “Erklärung der Perihelbewegung des Merkur aus der allgemeinen
Relativitätstheorie,” Sitzungsberichte der Königlich Preußischen Akademie der
Wissenschaften (Berlin (Jan., 1915) 831–839.

[2] F. W. Dyson, A. S. Eddington, and C. Davidson, “A Determination of the Deflection of
Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of
May 29, 1919,” Philosophical Transactions of the Royal Society of London Series A 220
(Jan., 1920) 291–333.

[3] S. W. Hawking, “Black holes in general relativity,” Commun. Math. Phys. 25 (1972)
152–166.

[4] J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four laws of black hole
mechanics,” Commun. Math. Phys. 31 (1973) 161–170.

[5] S. W. Hawking, “Black Holes and Thermodynamics,” Phys. Rev. D 13 (1976) 191–197.

[6] R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1
(1969) 252–276.

[7] R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14
(1965) 57–59.

[8] Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event
Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,” Astrophys.
J. Lett. 875 (2019) L1, arXiv:1906.11238 [astro-ph.GA].

[9] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation of
Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6,
(2016) 061102, arXiv:1602.03837 [gr-qc].

[10] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW170817: Observation
of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119
no. 16, (2017) 161101, arXiv:1710.05832 [gr-qc].

[11] LIGO Scientific, KAGRA, VIRGO Collaboration, R. Abbott et al., “Observation
of Gravitational Waves from Two Neutron Star–Black Hole Coalescences,” Astrophys. J.
Lett. 915 no. 1, (2021) L5, arXiv:2106.15163 [astro-ph.HE].

152

http://dx.doi.org/10.1098/rsta.1920.0009
http://dx.doi.org/10.1098/rsta.1920.0009
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1103/PhysRevD.13.191
http://dx.doi.org/10.1023/A:1016578408204
http://dx.doi.org/10.1023/A:1016578408204
http://dx.doi.org/10.1103/PhysRevLett.14.57
http://dx.doi.org/10.1103/PhysRevLett.14.57
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://arxiv.org/abs/1906.11238
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://arxiv.org/abs/1710.05832
http://dx.doi.org/10.3847/2041-8213/ac082e
http://dx.doi.org/10.3847/2041-8213/ac082e
http://arxiv.org/abs/2106.15163


Bibliography

[12] G. Gamow, “Expanding universe and the origin of elements,” Phys. Rev. 70 (Oct, 1946)
572–573. https://link.aps.org/doi/10.1103/PhysRev.70.572.2.

[13] R. A. Alpher, H. Bethe, and G. Gamow, “The origin of chemical elements,” Phys. Rev.
73 (Apr, 1948) 803–804. https://link.aps.org/doi/10.1103/PhysRev.73.803.

[14] B. Ratra, M. S. Vogeley, and M. S. Vogeley, “The Beginning and Evolution of the
Universe,” Publ. Astron. Soc. Pac. 120 (2008) 235–265, arXiv:0706.1565 [astro-ph].

[15] D. Clowe, A. Gonzalez, and M. Markevitch, “Weak lensing mass reconstruction of the
interacting cluster 1E0657-558: Direct evidence for the existence of dark matter,”
Astrophys. J. 604 (2004) 596–603, arXiv:astro-ph/0312273.

[16] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and
D. Zaritsky, “A direct empirical proof of the existence of dark matter,” Astrophys. J.
Lett. 648 (2006) L109–L113, arXiv:astro-ph/0608407.

[17] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological
parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].

[18] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological
parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].

[19] G. Steigman and M. S. Turner, “Cosmological Constraints on the Properties of Weakly
Interacting Massive Particles,” Nucl. Phys. B 253 (1985) 375–386.

[20] G. Bertone, “The moment of truth for WIMP Dark Matter,” Nature 468 (2010)
389–393, arXiv:1011.3532 [astro-ph.CO].

[21] K. Griest, “Galactic Microlensing as a Method of Detecting Massive Compact Halo
Objects,” Astrophys. J. 366 (1991) 412–421.

[22] MACHO Collaboration, C. Alcock et al., “The MACHO project: Microlensing results
from 5.7 years of LMC observations,” Astrophys. J. 542 (2000) 281–307,
arXiv:astro-ph/0001272.

[23] B. J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy.
Astron. Soc. 168 (1974) 399–415.

[24] B. Carr and F. Kuhnel, “Primordial Black Holes as Dark Matter: Recent
Developments,” Ann. Rev. Nucl. Part. Sci. 70 (2020) 355–394, arXiv:2006.02838
[astro-ph.CO].

[25] A. M. Green and B. J. Kavanagh, “Primordial Black Holes as a dark matter candidate,”
J. Phys. G 48 no. 4, (2021) 4, arXiv:2007.10722 [astro-ph.CO].

[26] I. Dalianis, A. Kehagias, and G. Tringas, “Primordial black holes from α-attractors,”
JCAP 01 (2019) 037, arXiv:1805.09483 [astro-ph.CO].

[27] M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem
with a Harmless Axion,” Phys. Lett. B 104 (1981) 199–202.

153

http://dx.doi.org/10.1103/PhysRev.70.572.2
http://dx.doi.org/10.1103/PhysRev.70.572.2
https://link.aps.org/doi/10.1103/PhysRev.70.572.2
http://dx.doi.org/10.1103/PhysRev.73.803
http://dx.doi.org/10.1103/PhysRev.73.803
https://link.aps.org/doi/10.1103/PhysRev.73.803
http://dx.doi.org/10.1086/529495
http://arxiv.org/abs/0706.1565
http://dx.doi.org/10.1086/381970
http://arxiv.org/abs/astro-ph/0312273
http://dx.doi.org/10.1086/508162
http://dx.doi.org/10.1086/508162
http://arxiv.org/abs/astro-ph/0608407
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1016/0550-3213(85)90537-1
http://dx.doi.org/10.1038/nature09509
http://dx.doi.org/10.1038/nature09509
http://arxiv.org/abs/1011.3532
http://dx.doi.org/10.1086/169575
http://dx.doi.org/10.1086/309512
http://arxiv.org/abs/astro-ph/0001272
http://dx.doi.org/10.1146/annurev-nucl-050520-125911
http://arxiv.org/abs/2006.02838
http://arxiv.org/abs/2006.02838
http://dx.doi.org/10.1088/1361-6471/abc534
http://arxiv.org/abs/2007.10722
http://dx.doi.org/10.1088/1475-7516/2019/01/037
http://arxiv.org/abs/1805.09483
http://dx.doi.org/10.1016/0370-2693(81)90590-6


Bibliography

[28] R. D. Peccei, “The Strong CP problem and axions,” Lect. Notes Phys. 741 (2008) 3–17,
arXiv:hep-ph/0607268.

[29] L. Bergstrom, “Dark Matter Candidates,” New J. Phys. 11 (2009) 105006,
arXiv:0903.4849 [hep-ph].

[30] H. Goldberg and L. J. Hall, “A New Candidate for Dark Matter,” Phys. Lett. B 174
(1986) 151.

[31] Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker, “Mechanism for Thermal Relic
Dark Matter of Strongly Interacting Massive Particles,” Phys. Rev. Lett. 113 (2014)
171301, arXiv:1402.5143 [hep-ph].

[32] S. M. Carroll, “The Cosmological constant,” Living Rev. Rel. 4 (2001) 1,
arXiv:astro-ph/0004075.

[33] A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,”
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin (Jan.,
1917) 142–152.
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